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Abstract Water temperature is an important abiotic variable in aquatic habitat studies and may be one of the 
factors limiting the potential fish habitat (e.g. salmonids) in a stream. Stream water temperatures are 
modelled using statistical approaches with air temperature and streamflow as exogenous variables in the 
Nivelle River, southern France. Two different models are used to model mean weekly maximum 
temperature data: a non-parametric approach, the k-nearest neighbours method (k-NN) and a parametric 
approach, the periodic autoregressive model with exogenous variables (PARX). The k-NN is a data-driven 
method, which consists of finding, at each point of interest, a small number of neighbours nearest to this 
value, and the prediction is estimated based on these neighbours. The PARX model is an extension of 
commonly-used autoregressive models in which parameters are estimated for each period within the years. 
Different variants of air temperature and flow are used in the model development. In order to test the 
performance of these models, a jack-knife technique is used, whereby model goodness of fit is assessed 
separately for each year. The results indicate that both models give good performances, but the PARX model 
should be preferred, because of its good estimation of the individual weekly temperatures and its ability to 
explicitly predict water temperature using exogenous variables. 
Key words stream water temperature; non-parametric vs parametric models; PARX, k-nearest neighbours 

Comparaison de modèles paramétriques et non-paramétriques de température de l’eau de la 
Rivière Nivelle, France 
Résumé La température de l’eau est une variable très importante pour les études d’habitat aquatique. Elle 
peut être un facteur limitant pour plusieurs espèces de poisson, telles que les salmonidés. Cet article présente 
une modélisation statistique de la température de l’eau en utilisant la température de l’air et le débit comme 
variables explicatives. Les données utilisées dans la modélisation numérique sont les températures 
hebdomadaires de la rivière Nivelle (France). Deux modèles de température de l’eau sont alors proposés et 
comparés, soit la méthode non-paramétrique des k plus proches voisins (VPP) et le modèle périodique 
autorégressif avec variables exogènes (PARX). La méthode des VPP consiste à chercher dans tout 
l’historique, les k plus proches voisins qui serviront à estimer la température actuelle. Le modèle PARX est 
un modèle autorégressif dont les paramètres de chaque variable explicative sont estimés indépendamment 
pour chaque période de l’année. Plusieurs attributs de température de l’eau et du débit sont considérés. La 
performance des modèles a été évaluée pour chaque année en utilisant une technique de validation croisée de 
type “jack-knife”. Les résultats préliminaires ont montré que le modèle PARX et le modèle VPP présentent 
une performance similaire dans la simulation des températures hebdomadaires. Toutefois, le modèle PARX 
demeure le plus approprié, car il préserve la persistance des séries périodiques et il offre une équation 
explicitant la relation entre la température de l’eau et les variables explicatives.  
Mots clefs température de l’eau en rivière, modèles non-paramétrique vs paramétrique; PARX, k plus proches voisins 
 
 
INTRODUCTION  

Water temperature is recognized as an important water quality parameter. It plays a major role in 
many chemical and biological processes present in streams and, hence, influences the health and 
the distribution of aquatic ecosystems. Water temperature extremes can have adverse impacts on 
aquatic habitats, especially when they are outside the optimal thermal range (Coutant, 1977). For 
example, warm waters have been observed to affect the mortality of trout (Lee & Rinne, 1980; 
Bjornn & Reiser, 1991). In addition, Lund et al. (2002) have shown that high water temperatures 
can have an impact on the development of juvenile salmonids. They showed that high summer 
water temperatures can cause significant protein damage and induce a heat-shock response. Water 



Comparison of non-parametric and parametric water temperature models 
 

 
 

Copyright © 2008 IAHS Press  

641

temperature is a variable for which changes are governed by the interaction of natural environ-
mental processes (e.g. air temperature, solar radiation, topography, riparian shading, humidity, 
wind velocity, etc.) and by human activities such as thermal pollution and deforestation (Brown & 
Krygier, 1970; Holtby, 1988). Therefore, water temperature modelling is a fundamental tool for 
the planning and management of water resources.  
 Existing water temperature models can be categorized in three groups: (a) deterministic 
models; (b) regression models; and (c) stochastic models (Caissie, 2006). Deterministic conceptual 
models are generally based on thermal budget calculations, which require numerous inputs (e.g. 
physiographic, hydrological and meteorological parameters). Examples of deterministic models 
include the US Fish and Wildlife SNTEMP model (Bartholow, 1989), the SSTEMP model 
(Bartholow, 1999) and the CEQUEAU hydrological and water temperature model (Morin & 
Couillard, 1990; St-Hilaire et al., 2003). Other references of simpler deterministic water tempera-
ture models include those of Gu et al. (1998) and Caissie et al. (2005), who used an equilibrium 
temperature concept.  
 An alternative approach to deterministic models in predicting water temperature is the use of 
statistical models (e.g. regression). In contrast to the deterministic models, the main advantage of 
the statistical models is their relative simplicity and minimal data requirement. Several regression 
approaches have been tested in the past. Water–air temperature regression models have been 
developed successfully for different time periods, including 2-hourly, daily, weekly, monthly and 
annual means (e.g. Stephan & Preud’homme, 1993; Webb & Walling, 1993; Webb & Nobilis, 
1997; Pilgrim et al., 1998; Erickson & Stefan, 2000). Nonlinear regressions are recommended for 
small time steps (e.g. Mohseni & Stefan, 1999). In streams with important subsurface flow 
contributions, groundwater discharge can reduce the daily maximum water temperature, which 
gives the stream a nonlinear behaviour (Caissie, 2006). Other models have also been developed to 
assess relationships between water temperature and air temperature. For example, the so-called 
stochastic models are generally applied for relatively small time steps (e.g. daily or sub-daily). In 
this approach, the seasonal component of water temperatures is first removed and time series 
models are then fitted to water temperature residuals. Early developments of this approach include 
those of Kothandaraman (1971) and Cluis (1972). More recently, Caissie et al. (1998, 2001) 
adapted the approach of Cluis (1972) to a relatively small system (Catamaran Brook, Canada, with 
a drainage basin of 50 km2). 
 Stochastic and regression models have the advantage of being computationally simple, and 
applicable to locations where air temperature data are available. However, such approaches do not 
guarantee that the seasonality of the data is completely removed to achieve stationary residuals, 
because the correlation structure of the series may be dependent on the period. This level of pre-
dictive capability calls for periodic models that are able to model periodicity in autocorrelations. 
Periodic autoregressive (PAR) and periodic autoregressive moving average (PARMA) models are 
variants of ARMA models (Box & Jenkins, 1976) that use periodic parameters. Periodic models 
have been widely and successfully used in econometrics applications (Osborn & Smith, 1989; 
Novales & de Frutto, 1997), as well as in the field of hydrology (Vecchia, 1985; Bartolini et al., 
1988; Ula & Smadi, 1997; Benyahya et al., 2007). Most applications are purely autoregressive and 
do not include exogenous variables. To our knowledge, PAR models with exogenous variables 
(PARX) have never been used to model water temperature. 
 Another approach, seldom used in water temperature modelling, consists of developing non-
parametric models. The models are labelled non-parametric because they are based on calculating a 
certain attribute without using a parameterised statistical model. One such approach is the k-nearest 
neighbours (k-NN) method (Yakowitz & Karlsson, 1987). The method consists of searching among 
past observations for the k events which are most similar to the present situation. A prediction is then 
built from the water temperatures which are associated with these k events. The technique has been 
used to analyse rainfall–runoff processes and has been advantageously compared with autoregressive 
moving average models with exogenous inputs (ARMAX) (Karlsson & Yakowitz, 1987; Yakowitz 
& Karlsson, 1987). Galeati (1990) evaluated and compared the performances of the k-NN method 
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and autoregressive model with exogenous inputs (ARX) to predict daily mean discharge and found 
the performances of the two methods substantially equal.  
 Although most statistical models only incorporate air temperature as an exogenous variable, 
the influence of discharge on water temperature has also been recognized (e.g. Webb et al., 2003; 
Neumann et al., 2003). Both the PARX model and the k-NN approaches can include discharge as 
an input. Therefore, the specific objectives of the present study are: (1) to evaluate the possibility 
of employing the k-nearest neighbours method (k-NN), and (2) to compare its performance with 
that of a PARX model with air temperature and streamflow as exogenous inputs. These two 
approaches were implemented using weekly maximum temperature data from a French river with 
an important salmon population: the Nivelle River in France.  
 
 
METHODS  

Study area  

Time series of water temperature were obtained from the Nivelle River, located in southwestern 
France (Fig. 1). It is a relatively small river with a drainage area of 238 km2 and length of 39 km 
from its source in Spain to the Bay of Biscay at Saint-Jean-de-Luz. The catchment is well known 
for its population of Atlantic salmon (Salmo salar) (Dumas & Prouzet, 2003). The oceanic climate 
is mild and wet (1700 mm/year average rainfall at St-Pée-sur-Nivelle) and provides a mean annual 
discharge of 5.4 m3/s downstream from the confluence of the main tributary, the Lurgorrieta.  
 
 

 
Fig. 1 Nivelle River catchment area indicating the water temperature and streamflow stations. 

Water temperature station 
(Ibarron) Streamflow station 

(Cherchebruit) 
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 Water temperatures were measured daily at one stream location (Ibarron; Fig. 1) by the 
National Institute of the Agronomic Research (INRA) using Tidbit, Minilog Vemco and Jules 
Richard temperature data loggers (accuracy ±0.2°C, ±0.3°C and ±0.4°C, respectively). Water 
temperature data were available from 1984 to 2004. There were some missing values between 
18 July and 31 August 1994, which were interpolated using an interannual mean. Daily air 
temperatures were obtained from the Biarritz Airport weather station, which is located 13 km north 
of the water temperature station. Streamflow for the same period was measured at the Nivelle 
streamflow station (Fig. 1), which is located in the downstream portion of the drainage area. Mean 
weekly maximum temperatures (MWMT) were calculated from daily maximum temperatures 
(mean of seven consecutive calendar days). Weekly values were selected for this study based on 
their potential use in fisheries management. To assess changes in fish habitat and growth 
conditions, the weekly time scale is sometimes deemed more appropriate (Eaton & Scheller, 1996; 
Oliver & Fidler, 2001). Moreover, previous research showed that weekly and monthly averages of 
stream temperature and air temperature are more correlated than daily values (Pilgrim et al., 1998; 
Erickson & Stefan, 2000).  
 The present study focuses on the period within every year spanning from 1 May to 
31 November (30 weeks). Outside these periods (i.e. December–April), the water temperature 
variations on the Nivelle River were typically less than 5°C (Fig. 2(b1)). It was therefore decided 
to study the period during which the largest temperature variations occurred (magnitude between  
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Fig. 2 Weekly water temperature data collected in the Nivelle catchment (1984–2004): (a) weekly 
water temperature data including the December–April periods; and (b) example of detailed view of 
weekly water temperature data (1994–1998). (b1) and (b2) represent the amplitude of the water 
temperature variation from December to April  and from May to November, respectively. 

(b) 

(a) 
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10 and 12°C during the warmer period of May–November; Fig. 2(b2)). One of the reasons for this 
selection was the fact that salmonids are much more likely to experience thermal stress during the 
warmer period, when maximum water temperature may exceed a certain tolerable limit. Indeed, 
Hodgson & Quinn (2002) demonstrated that, during the spawning season, some species of pacific 
salmon will suspend their spawning activity when the water temperature exceeds 19°C. Moreover, 
Crozier & Zabel (2006) showed that juvenile Chinook salmon survival is negatively correlated 
with summer temperature. 
 
k-Nearest neighbours (k-NN) 

The key steps in the k-NN algorithm are as follows: 
(a) Compile a feature vector. The feature vector X consists of values of the selected input 

attributes for which the k-nearest neighbours were to be found (usually <4). In the present 
study, a total of 11 candidate independent variables were initially considered. All are derived 
from three observed variables: water temperature (Tw), air temperature (Ta) and streamflow 
(Q) (Table 1). The potential inputs include autoregressive terms of water temperature, weekly 
degree-days, lagged air temperature, lagged streamflow and relative flow change. Relative 
flow change was used as opposed to direct flow measurements because it was shown by 
Ahmadi-Nedushan et al. (2007) to yield better results for daily water temperature models. 
Weekly degree-days were defined here as the cumulative sum of the weekly air temperature 
over the period of analysis. 

(b) Find the weighted sum of the attributes. Since the scales of water and air temperature units 
differ from that of streamflow, the weighted attributes were generalized as a weighted 
standardized norm (N): 

 i

n

i
i XwN ∑

=

=
1

1
 (1) 

 where n1 is number of attributes, wi and Xi are, respectively, the optimized weights and the 
vectors of standardized (i.e. subtract mean value and divide by the standard deviation) values 
of the selected attributes. In this study, weights were varied between 1 and 1000, and all 
possible combinations tested by increments of 100. 

(c) Calculate the Euclidean distance between the norm of the period of interest and the norm of 
all other available data. The period of interest is the week for which the forecast or simulation 
is required. For two norms (Nj1, Nj2) calculated using vectors Xj1 for the period of interest and 
Xj2 (j2 = 1, …, j1 – 1, j1 + 1, …, m) for the m other periods in the database, the Euclidean 
distance (δ) was defined as:  

 ( ) ∑
=

−=−=
1

1
2,1,2121,

n

i
jijiijjjj XXwNNNNδ  (2) 

(d) Sort the distances (δ) in ascending order, and retain only the first k nearest neighbours. In 
this study, k was limited to a maximum value of 3. The strategy for choosing the optimal k 
was to try several successive values of k (e.g. 2, 3 and 4) and to select the combination for 
which the model gave the best prediction.  

(e) Assign a weight (ki) to each of the k neighbours. Thus the predicted value of the final output 
was a weighted sum of the values of neighbours (∑ =

k
i iiTk1 , where Ti are the neighbours). 

(f) Repeat steps (a)–(e) for each of the time steps. 
 Obviously, this approach can be computationally intensive. However, applications indicate 
that a solution can be obtained in a relatively short time (less than a day, depending on computing 
power). 
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Table 1 List of attributes included in the preliminary analysis of k-NN method.  
Attributes Description Formula 
Tw0 Water temperature of the present week (t)  Tw(t) 
Tw1 Water temperature of the week (t – 1)  Tw(t – 1)  
Tw2 Water temperature of the week (t – 2) Tw(t – 2)  
Tw3 Mean of water temperature of the two past weeks mean[Tw(t – 1), Tw(t – 2)]  
Ta1 Air temperature of the week (t – 1)  Ta(t – 1)  
Ta2 Air temperature of the week (t – 2)  Ta(t – 2)  
Ta3 Mean of air temperature of the two past weeks mean[Ta(t – 1)), Ta(t – 2)]  
Ta4 Weekly degree-days Cumulative sum of air temperature 
Q1 flow of the week (t – 1)  Q(t – 1)  
Q2 flow of the week (t – 2)  Q(t – 2)  
Q3 Mean of flow of the two past weeks mean[Q(t – 1)), Q(t – 2)]  
Q4 Relative flow change [Q(t) – Q(t – 1)]/Q(t)   
 
 
Periodic autoregressive model with exogenous variables (PARX) 
Once calibrated, parametric models can predict values without using past historical record. The 
key steps in the PARX model are as follows: 
(a) Define the independent variables. Consider Twv,z, Tav,z and Qv,z, the time series of water 

temperature, air temperature and streamflow, respectively. The subscripts ν and τ denote the 
year and the period (e.g. week), respectively, where τ = 1, …, ω, with ω being the number of 
periods in the year.  

(b) Test the normality of the data. Parametric time series models generally require that the 
underlying series follows a normal distribution (Salas, 1993). Otherwise, the original series 
should be transformed to a Gaussian shape via log, square root or Box-Cox transformations. 
The predicted values from the model were then back-transformed into the original space. In 
the present study, the Shapiro-Wilk test (Shapiro & Wilk, 1965) was used to test the normality 
of the data. This test is appropriate when the sample size is lower than 50.  

(c) Estimate the parameters of the model. Following the earlier work of Salas (1993), a PARX 
model representing the water temperature series may be written in the following form: 
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 where τ > i1, i2, i3; ,1 ,1 τiφ τiφ ,2
1  and τiφ ,3

1  are periodic parameters; p1, p2 and p3 are the lags of 
water temperature, air temperature and streamflow, respectively; and εν,τ is the error term, 
which was excluded from the comparative study. In the present study, the time series of each 
of the variables were first standardized. Subsequently, to obtain the final estimated value of 
water temperature, a back transformation was applied. Parameters may be estimated for each 
time step (period) from the data by a number of techniques such as the method of moments, 
the least squares method, or the method of maximum likelihood (Salas, 1993). In this study, 
the least squares method was used. Generally, estimates obtained by this method are 
consistent, unbiased and efficient (Hsia, 1977).  

 
Model evaluation and validation 
To compare the predicted (P) and the observed (O) water temperatures, the root mean square error 
(RMSE, equation (4)), the bias (Bias, equation (5)) and the Nash-Sutcliffe coefficient of efficiency 
(NSC, equation (6)) were used (Nash & Sutcliffe, 1970; Janssen & Heuberger, 1995). The RMSE 
is defined as: 
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where n2 is the number of water temperature observations. The RMSE, being the square root of the 
sum of the variance and the square of the bias, was calculated to inform on the average magnitude 
of the water temperature errors. This criterion is often used in water temperature modelling studies 
(e.g. Caissie et al., 1998, 2001; St-Hilaire et al., 2003; Ahmadi-Nedushan et al., 2007).  
 The Bias error was computed simply as the sum of the differences between predicted and 
observed values divided by n2: 

( )∑
=

−=
2

12

1Bias
n

i
ii OP

n
  (5) 

Efficiency of fit for both the k-NN method and the PARX model was determined as:  
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where O  is the mean weekly water temperatures for the period τ . The NSC compares model 
performances with the sample mean. It ranges from minus infinity (poor model: model does not 
perform better than using the sample mean) to 1 (perfect model).  
 To test the performance of the above models, the leave-one-out (jackknife) validation 
technique (Quenouille, 1949) was used. This method consists of removing one year from the data 
and estimating the model using the rest of the data set. The performance was judged by using the 
model to estimate the left out data. Thereafter, the performance criteria (equations (4)–(6)) were 
calculated by year and an average value of all years was also calculated. All models and 
performance estimation were done using Matlab 6.5.  
 
 
RESULTS 

Time series of water temperature, air temperature and flow used in this study are plotted in Fig. 3. 
Water temperature data in the Nivelle River showed a good correlation with air temperatures and 
streamflow (r = 0.93 and –0.48, respectively). This result indicated the relevance of including air 
temperature and streamflow as exogenous variables in the water temperature modelling. The 
results are organized as follows: first, k-NN results are shown and are thereafter compared to that 
of the PARX model, with air temperature and flow as exogenous predictor variables.  
 
k-NN model 
In order to select the best set of the explanatory variables presented in the Table 1, the simplest 
approach consisted of performing a correlation analysis between Tw0 and each attributes 
independently for each year. Figure 4 shows the correlation box plots. Box boundaries represent 
the interquartile range and the whiskers represent the 10th and 90th percentile, whereas the median 
is indicated by the black centre line. The extreme values are shown as individual points. As 
expected, among the selected attributes, Tw1, Tw2, Ta1, Ta4 and Q1 have the highest correlation 
coefficients with the present water temperature (Tw0; see Fig. 4). Indeed, median correlation 
coefficient values are 0.86, 0.73, 0.83, –0.55 and –0.38 for Tw1, Tw2, Ta1, Ta4, and Q1, 
respectively. Therefore, these five attributes were considered in the analysis. Result of the analysis 
showed that there was a negative relationship between water temperature (Tw0) and flow of the 
past week (Q1), which can be explained by the effect of thermal inertia of the river (i.e. a time lag 
between flow and water temperature variations caused by the ability of a river to conduct heat).  
 In order to build the best k-NN model, single attributes were first tested independently. Then, 
the so-called best subset approach was used, i.e. all possible combinations of attributes were con-
sidered and the subset yielding the best results was selected as the final model. The k-NN models 
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Fig. 3 Water and air temperature and streamflow data, excluding the periods December–April, collected 
in the Nivelle catchment from 1984 to 2004. 

 
 
which included one, two, three, four and five attributes were denoted k-NN1, k-NN2, k-NN3, 
k-NN4 and k-NN5. In order to compare the performance of these models, we used the three 
different criteria described previously, i.e. the RMSE, Bias and NSC. Results are presented in 
Table 2. These results indicated that the performance associated with one attribute models (k-NN1) 
was modest. The mean values of RMSE ranged from 2.52 to 4.02°C. All attributes slightly 
underestimated the water temperatures, with annual mean bias values between –0.59 and –0.53°C. 
The interannual average NSC ranged from –0.83 to 0.27. 
 The performance of subsets k-NN2, k-NN3, k-NN4 and k-NN5 was also compared (Table 2). 
These results indicated that these models outperformed the k-NN1. The interannual mean values of 
RMSE varied between 1.20 and 2.14°C. Also, the NSC values calculated for all models were 
higher (>0.49) than the value reported for k-NN1. It can be seen from results presented in Table 2 
that interannual RMSE values were similar for k-NN3, k-NN4 and k-NN5 (between 1.20 and 
1.34°C) among which the model k-NN4 provided the lowest RMSE value (1.20°C). Small 
interannual mean bias values were observed for these models (–0.02°C < Bias < 0.01°C) and NSC 
values were above 0.80. The results indicated that the k-NN method performed well for the 
prediction of weekly water temperatures of the Nivelle River. The k-NN4 model had the best 
performance among the models based on the lowest RMSE and bias and the maximum NSC 
values. This model achieved this level of performance with Tw1, Tw2, Ta1 and Q1 as exogenous 
variables. These results also indicated that streamflow (Q1) can be included in the model as an 
independent variable, and that considering streamflow in k-NN models improved performance; 
however, the improvement was relatively weak (decrease in RMSE < 0.12°C). 
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Table 2 Performance measures (RMSE, Bias, NSC) of best-subset k-NN and PARX models. 
RMSE (°C) Bias (°C) NSC Model description Variables 
Mean Range Mean Range Mean Range 

Tw1 2.52 [2.14, 2.94] –0.54 [–0.79, –0.24]   0.27 [–0.47, 0.60] 
Tw2 3.15 [2.67, 3.57] –0.53 [–0.74, –0.13] –0.12 [–0.86, 0.27] 
Ta1 2.76 [1.75, 3.81] –0.57 [–1.10, 0.12]   0.14 [–0.71, 0.59] 
Ta4 2.85 [1.99, 3.78] –0.56 [–0.97,–0.17]   0.08 [–0.43, 0.67] 

k-NN1 

Q1 4.02 [2.86, 4.98] –0.59 [–1.14, –0.17] –0.83 [–2.48, –0.05] 
Best subset of k-NN2 Tw1, Ta1 2.14 [1.76, 2.61] –0.44 [–0.67, –0.16]   0.49 [0.05, 0.70] 
Best subset of k-NN3 Tw1, Tw2, Ta1 1.31 [0.78, 1.60]   0.01 [–0.09, 0.24]   0.81 [0.64, 0.89] 
Best subset of k-NN4 Tw1, Tw2, Ta1, Q1 1.20 [0.80, 1.50] –0.01 [–0.19, 0.19]   0.84 [0.67, 0.90] 
k-NN5 Tw1, Tw2, Ta1, Ta4, Q1 1.34 [0.94, 1.67] –0.02 [–0.19, 0.17]   0.80 [0. 64, 0.90] 
Best subset of PARX2 Tw1, Ta4 1.59 [1.19, 2.44] –0.01 [–1.28, 1.79]   0.70 [0.04, 0.85] 
Best subset of PARX3 Tw1, Tw2, Ta4 1.58 [1.19, 2.37] –0.01 [–0.99, 1.50]   0.70 [0.12, 0.86] 
Subset of PARX4 Tw1, Tw2, Ta4, Q1 1.68 [1.16, 2.76]   0.00 [–1.00, 1.38]   0.66 [–0.18, 0.88] 
PARX5 Tw1, Tw2, Ta1, Ta4, Q1 1.74 [1.08, 2.98]   0.01 [–0.80, 1.39]   0.62 [–0.38, 0.90] 
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Fig. 4 Box plots showing the correlation between Tw0 and each attribute. 

 
PARX model 
The models developed in the first part of the study have excellent descriptive ability; however, 
they did not take into account the significant periodic autocorrelation of water temperatures. A plot 
of the original data, excluding December–April periods, shows the cyclic behaviour of the weekly 
air and water temperatures (Fig. 3). The nonstationarity of water temperatures was apparent since 
the mean, standard deviation and autocorrelation functions vary from week to week (Fig. 5). 
Therefore, considering a periodical model was deemed appropriate. Hence, in the second part of 
the study, the k-NN method was compared to the PARX model.  
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 Before applying the PARX model, it was necessary to ensure that the original data were 
normally distributed. Results of the Shapiro-Wilk test with a 5% significance level revealed that 
the normality assumption was accepted for each period (0.08 < p < 0.99). Therefore, these data 
were not transformed.  
 The second part of the study was devoted to the testing and the development of PARX models 
that included air temperature and flow. Over 15 different variants of water temperature, air 
temperature flow were initially tested in the model development. However, only the subset of the 
most important variables (in terms of the performance obtained by the models) are shown in 
Table 1 and used in the final analysis to identify the best PARX models which had good 
descriptive ability. As in the k-NN method, the PARX models, which included two, three, four and 
five variables were denoted, respectively, PARX2, PARX3, PARX4 and PARX5. The MWMT 
series were broken down into 30 periods with τ = 1 corresponding to the first week of May and 
τ = 30 corresponding to the last week of November.  
 Results for the performance evaluation are presented in Table 2. This table indicates that all 
models performed well, with RMSE values between 1.58 and 1.74°C, among which the PARX3 
provided the lowest value (1.58°C). All models had very similar interannual NSC means  
(0.62 < NSC < 0.70). The PARX models were found to have small relative mean bias (centred on 
0°C). The range of annual biases were also similar for all PARX models (Table 2), among which  
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Fig. 5 (a) Sample mean, (b) standard deviation and (c) autocorrelation coefficients of lag 1 and lag 2 of 
mean weekly maximum temperature series for the Nivelle River. 
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the annual bias values of PARX3 ranged from –0.99 to 1.50°C. While the models performed 
comparably and the differences were minimal (≤0.16°C), the PARX3 model was selected as the 
best model based on minimum RMSE and maximum NSC coefficient. This level of performance 
was achieved with two autoregressive terms (Tw1, Tw2) and one exogenous independent variable: 
weekly degree days (Ta4). The PARX3 model was defined as follows: 

1,,12,,21,,1, 4Ta2Tw1Tw1Tw −−− ++= τνττνττνττν φφφ  (7) 

and τ > 2. 
 It should be noted that the inclusion of streamflow did not bring improvement (PARX4). As 
an example, parameter estimates for the validated year 2004 are displayed in Table 3. In order to 
illustrate the general quality of those results, Fig. 6 shows the time series of predicted values by the 
k-NN4 and PARX3 models versus observed water temperatures for some validation years, which 
had the lowest values of RMSE. It can be seen that both models were suitable to capture the 
seasonal variation of water temperature and provided relatively good estimates of measured 
values.  
 
 

Table 3 Model parameters estimates for PARX3 of mean weekly maximum temperatures of the validated year 2004.  
Parameters Period (τ):              
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

τφ ,11    1.04 –0.34 –1.19 –0.11   0.5 –0.37 –0.04   0.17 –0.16   0.24   0.31   0.02   0.25   0.04   0.21 

τφ ,21  –0.27 –0.21 –0.24 –0.2   0.33   0.22 –0.11 –0.16 –0.29 –0.13 –0.35 –0.1 –0.59 –0.22 –0.27 

τφ ,12  –0.86   0.26 –0.18 –0.39   0.39   0.21   0.05   0.60   0.12   0.36 –0.13   0.17 –0.16   0.08 –0.20 
 Period (τ):              
 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

τφ ,11    0.27 –0.08   0.05   0.89   0.3   0.82   0.46   0.3   0.04 –0.3   0.28   0.21 –0.5 –0.28   0.16 

τφ ,21  –0.37   0.1 –0.4 –0.55 –0.29   0.12   0.04 –0.05   0.23   0.04 –0.01 –0.67 –0.21 –0.12 –0.15 

τφ ,12  –0.24   0.38   0.27   0.19 –0.27 –0.49 –0.24 –0.44 –0.37 –0.59 –0.33   0.36 –0.21 –0.19 –0.33 
 
 
DISCUSSION AND CONCLUSION 

This work was motivated by the need to develop a robust model to predict mean weekly maximum 
temperature with air temperature and streamflow as exogenous inputs. To this end, two statistical 
approaches were used to relate water temperature to air temperature and streamflow in the Nivelle 
River, in southwestern France. The first model was a non-parametric k-NN method which was 
compared to the parametric model PARX. Because of its non-parametric nature (data driven 
method), the k-NN method does not make any assumption about the underlying statistical 
distributions. This approach does not take into account the periodic autocorrelation in the weekly 
water temperature series, which is significant. Moreover, the k-NN method cannot be easily 
extrapolated outside of the temperature range encountered in the data set used to calibrate it. The 
PARX model can thus be seen as more appropriate. The most striking feature of the PARX model, 
widely used in practice, is that it preserves the periodic correlation structure in the seasonal data. 
However, the disadvantage of this model is the assumption that the distributions are normal; 
therefore, the PARX model should be applied only after a normalizing transformation of data for 
which density functions exhibit departures from Gaussian distributions. However, a transformation 
is not necessary when considering temperature time series, which seldom depart from normality. 
 Different variants of water temperature, air temperature and streamflow were used in model 
development. Box plots of correlation coefficients showed that the best attributes included lagged 
water temperature (lags 1 and 2 weeks) and lagged air temperature (lag 1 and weekly degree days) 
and streamflow (lag 1). The results (Table 2) indicated that the best models (PARX3 and k-NN4) 
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require, respectively, one air temperature input (weekly degree days of air temperature) and both 
lagged air temperature (lag 1) and streamflow (lag 1). However, the improvement in k-NN 
performance by including the streamflow variable was modest. 
 A major conclusion of this first comparison, although with only one study site and relatively 
short time series (21 years), is that the k-NN method, which is a data-driven method, may provide 
good results in terms of RMSE, NSC and bias error. These goodness-of-fit indicators are focused 
on comparing observed and simulated values and do not necessarily take into account uncertainty 
associated with measurements. The fact that the RMSE was significantly larger than sensor 
accuracy implies that the uncertainty can be mostly attributed to model shortcomings and intrinsic 
natural uncertainty, rather than measurement errors.  
 It should be remembered that, for all multi-attribute k-NN models, the weight of the neigh-
bours was also optimised. The result showed a substantial equivalence of the two methods, which 
is in agreement with the conclusion reported by Galeati (1990). However, the PARX model may 
be preferred, due to its good estimation of the individual weekly temperatures and its ability to 
capture the periodic autocorrelation of the weekly water temperature series. Once the PARX 
model (equation (7)) is developed for a site, it can be used to estimate future water temperatures 
using weekly degree days of air temperature and lagged water temperature. In so doing, it might 
have a greater practical interest, such as using predicted water temperatures to anticipate the health 
of an aquatic habitat.  
 Comparison of models results with those reported in other studies is limited. The comparison 
between a periodic autoregressive model and a so-called stochastic model (i.e. seasonal component 
is estimated deterministically and residuals are modelled with AR methods) had already been 
performed in a previous study completed on the Deschutes River (Oregon, USA) by Benyahya et 
al. (2007). This comparison was not repeated in the present study. It was shown that PAR model 
performance is similar to that of the stochastic approach with an average error (RMSE) less than 
1°C. Recently, Koutsoyiannis et al. (2008) compared a parametric (periodic autoregressive) model 
and a non-parametric (k-NN and artificial neural network) model for the Nile flow prediction. 
They found good performance of the non-parametric model, and even better performance of the 
parametric model. 
 Each study tends to be unique in terms of model application, and there are several con-
founding factors, such as climate, physiographic and geomorphologic characteristics, that prevent 
a straightforward comparison. Nonetheless, some results found in the literature are listed here in 
order to provide a qualitative, first comparison of model performances. 
 For instance, the use of the deterministic CEQUEAU model on Catamaran Brook, Canada, 
yielded a RMSE of 1.8°C for a time series of daily temperatures measured between 1990 and 1995 
(St-Hilaire et al., 2000). Most deterministic model performance values found in the literature were 
calculated for short simulation periods; which makes comparison even more difficult. For instance, 
a commonly used deterministic model, QUAL2E, was calibrated and validated on the Yakima 
River (Washington, USA) on a very limited data set (10 measurements). RMSE values were less 
than 0.5°C (Carroll & Joy, 2001). Another deterministic model, BASINTEMP (Allen et al., 2007) 
yielded RMSE values smaller than 0.5°C when used to simulate maximum weekly temperature on 
the South Fork Eel River (North Carolina, USA) for a period of two years. Tung et al. (2007) 
designed a deterministic model that includes a shading algorithm. They obtained RMSE values 
ranging between 0.33 and 0.93°C. However, their model was used at an hourly time step.  
 The use of the equilibrium temperature model (Caissie et al., 2005) on Catamaran Brook 
yielded an overall RMSE of 1.2°C for 8-year time series of daily temperatures. Ahmadi-Nedushan 
et al. (2007) compared air–water regression, multiple regression using air and flow as exogenous 
variables and the so-called stochastic approaches to simulate daily water temperature on the 
Moisie River for a period of six years. They obtained RMSE varying between 0.5 and 1.7°C. The 
Moisie River is a larger, more damped system than the Nivelle River, which may explain the 
somewhat better performance of some of the regression-based approaches in this case. Morill et al. 
(2005) had higher RMSE (>2.65°C) when they used the nonlinear model of Mohseni et al. (1998) 
 



 
 

 

 

 

Fig. 6 Time series of observed and predicted water temperatures obtained by k-NN4 and PARX3 for some validation years, the solid lines represent the 
observations. 
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on different rivers and streams from different countries. It can therefore be seen that, generally, the 
RMSE obtained for the two models used in the present study are of the same order of magnitude as 
other models, when they are used to simulate the available length of time series (i.e. > 5 years). 
 The importance of model differences to predictions must be analysed within the scope of their 
potential impact on aquatic habitat management. Temperature forecasting can be of great use to 
identify events that may lead to thermal stress for fish and other aquatic species. Hence, the ability 
of the proposed models to accurately reproduce MWMT is of specific interest. No systematic bias 
in the estimation of MWMT by the k-NN or the PARX models was observed in this study (Fig. 6). 
This is crucial for operational use of these approaches, as a systematic underestimation of the 
MWMT could jeopardize managerial decision-making during periods of potential thermal stress.  
 Another important feature of models that use exogenous variables as inputs is the ability to 
include flow as predictor. This is of great importance for habitat management in regulated rivers. 
Models such as k-NN4, which include flow, can be used to test the impact of various flow 
management scenarios on the thermal regime. Such a feature will likely become essential for river 
water quality and habitat management. Flow and water temperature monitoring is becoming 
increasingly easier to implement with technological improvements and the decreasing cost of the 
monitoring equipment. Hence, multiple monitoring sites can be envisaged for a number of river 
systems. Managerial decisions on the allowed fishing effort, effluent regulation and water con-
sumption can all benefit from the generation of scenarios that could be performed using these 
models. 
 In this study we used parametric and non-parametric approaches to model water temperature. 
There are still many methods which have been used successfully in many forecasting applications 
in engineering and science; however, they have not yet been fully explored in water temperature 
modelling. Examples include parametric approaches, such as the logistic regression for threshold 
exceedance (St-Hilaire et al., 2006), and geostatistical models (Gardner et al., 2003). Non-
parametric models include artificial neural networks (Bélanger et al., 2005) and regression trees 
(Dzeroski et al., 2000). The validation presented in this study was limited to one site. To fully 
validate the preliminary conclusions of the present study, applications to other sites with longer 
time series would be useful. 
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