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a b s t r a c t

The effect of spatial variation in substrate size on juvenile Atlantic salmon density in the

Sainte-Marguerite, a major salmon-spawning river in QC, Canada, was investigated using

ground surveys and remote sensing. Densities of both fry and parr were determined by

single-pass electro-fishing at up to 48 sites along the length of the river in August of each

of the years from 1997 to 2004. Substrate size was determined by two techniques. Firstly, a

ground survey of median substrate size (D50) was conducted concurrently with the electro-

fishing, providing information on the substrate actually experienced by the salmon at the

point of capture (a parcel area of 5 m × 20 m for each site). Secondly, an airborne survey was

conducted along the length of the river in August 2002 using a helicopter-mounted digital

camera. Images from this survey were then processed to show the mean D50 in the area of

each image (an area from bank to bank, 60 m in length along the river) encompassing each

parcel. Relationships between juvenile salmon density and substrate size were determined

using preference models where the model partitioning had been determined by regression

tree analysis. For comparison, preference models were also produced where the model parti-

tioning was determined arbitrarily. The shape of the relationships between juvenile salmon

density and parcel D50 were similar to those between juvenile salmon density and mean

image D50. However, the relationship was stronger with mean image D50, suggesting that

the habitat surrounding the location in which juvenile salmon were found had a direct
influence on their density. Additionally, preference models determined from regression tree

analysis had greater explanatory power than those determined using an arbitrary parti-

tioning approach. These results suggest that remote sensing, alongside a robust approach

for determining preference models, may be an effective tool in modelling juvenile Atlantic
salmon habitat use.
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1. Introduction

The dominant method for determining fish habitat use within
rivers is by in situ ground survey, in which habitat charac-
teristics are sampled concurrently and at the same locations
within the river as the sample of fish density. A variety of
approaches are then used for analysing relationships between
the habitat and fish density data including regression anal-
ysis (Terrell et al., 1996), artificial neural nets (Reyjol et al.,
2001) and generalised additive models (Hedger et al., 2005).
One of the most established approaches is that of empirical
preference modelling, often using some variant on the method
outlined by Jacobs (1974), which shows the change in habitat
use as a function of availability, usually by a step function in
which the habitat is subjectively partitioned into a series of
distinct classes. For example, substrate size is a key determi-
nant of habitat selection by juvenile Atlantic salmon (Salmo
salar L.) in rivers (Gries and Juanes, 1998). Empirical preference
modelling has shown that juvenile salmon prefer moderately
coarse substrates of pebbles (0.4–6.4 cm), cobbles (6.4–25.6 cm)
and boulders (greater than 25.6 cm) (Bardonet and Baglinière,
2000), with fry dominating the pebble to cobble range and
parr dominating the cobble to boulder range (Klemetsen et
al., 2003).

The limitation of the habitat modelling approach of mea-
suring the habitat solely where the fish are found is that this
approach ignores spatial patterns of habitat use, in which fish
move throughout a home range (Martin-Smith et al., 2004) to
exploit multiple habitats (Heggenes et al., 1999). Thus, fish
density will be dependent not solely on the habitat char-
acteristics in which they may be found but on surrounding
characteristics—an area of optimal habitat may not support a
high fish density if it is surrounded by an area of sub-optimal
habitat. The application of remote sensing may increase cover-
age of the river habitat (Mertes, 2002; Lane et al., 2003; Gilvear

et al., 2004; Legleiter et al., 2004) and overcome the spatial-
coverage limitations associated with ground sampling. The
dominant method for analysing remote sensing imagery has
been through qualitative analysis, but the use of quantitative

Fig. 1 – The River Sainte-Marguerite. Survey station positions on
circles.
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techniques has increased in recent years (Whited et al., 2002;
Carbonneau et al., 2004).

In this paper, we use high resolution remote sensing in the
modelling of juvenile Atlantic salmon habitat use of different
bed substrates in the Sainte-Marguerite River, QC, Canada. In
particular, we examine how the synoptic coverage provided
by remote sensing compares with the limited coverage avail-
able from ground sampling in terms of explaining substrate
use by juveniles. We do this using preference models in which
the partitions have been determined using the bilinear recur-
sive partitioning technique of regression tree analysis—the
rationale being that allowing the data to determine the par-
titioning will lead to a greater explanatory power than would
be achieved through an arbitrary user-determined partition-
ing.

2. Study area and data analysis

The Sainte-Marguerite River (48◦09′21′′N, 69◦33′51′′W) is a
cobble-bed river located on the north coast of the Saint-
Lawrence estuary in Québec, eastern Canada (Fig. 1) (Talbot
and Lapointe, 2002). It drains a basin of 2130 km2, through its
principle branch (98 km in length) and its north-east branch
(97 km in length). The mean width of the principle branch is
approximately 22 m at peak discharge in the spring. Width
varies greatly: 25% of the river course has a width greater
than approximately 30 m and the maximum width is greater
than 60 m. Mean monthly discharge of the principle branch
is approximately 25 m3 s−1 and the maximum daily discharge
during peak flow may exceed 70 m3 s−1. The banks of the river
are covered by either riparian vegetation, consisting of scrub or
trees, or non-vegetated substrates (particularly at low flows).
Given the width of this river, shading by riparian vegetation
accounts for less than 10% of the river surface.

A ground survey of juvenile Atlantic salmon density was

conducted on the principle branch of the Sainte-Marguerite in
August of each year from 1997 to 2004. Forty-eight survey sta-
tions were sited along the length of the principle branch, with
their positions being determined by a hand-held GPS in 2004.

the principle branch are shown by super-imposed filled
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ue to operational constraints related to the difficulty of sam-
ling the river habitat, the actual position of the sites where

uvenile densities were measured (parcels) varied from year-
o-year within a range of approximately 30 m around each of
he survey station positions. Additionally, samples were not

ade at every survey station in every year (measurements
ere made at only 21 stations in the year of minimum sam-
ling effort). In each parcel (of dimension 5 m × 20 m), juve-
ile salmon density was estimated using single-pass electro-
shing (see Jones and Stockwell, 1995) and were categorised
n the basis of length as being either fry or parr. Single-pass
lectro-fishing has been used in habitat modelling (Rahel and
ibbelink, 1999; May and Brown, 2002; Paller, 2002) but pro-
uces less accurate estimates than multi-pass electro-fishing

Meador, 2003). Given this, the relative accuracy of single pass
lectro-fishing in the Sainte-Marguerite was determined by
nalysis of multi-pass samples obtained at 22 stations in a
urvey conducted by Ministère des Ressources naturelles et de la
aune, Québec, in this river in 1994. Densities in these stations
ere estimated by a maximum likelihood method (Junge and

ibosvàrsky, 1965).
A ground survey of substrate size was conducted con-

urrently with the electro-fishing. A Wolman count (Gibson
t al., 1998) of the substrate was acquired from each par-
el, the length of the secondary axis of each particle was
easured and a D50 (the median length) was determined.

emotely sensed imagery of the principle branch of the river
as obtained between 10:00 and 15:00 h on 17 and 18 August

002 (giving a solar elevation angle varying between 42◦ and
2◦ above the horizon) using a helicopter-mounted XEOS true-

olour digital camera (GENIVAR Inc.). From an above-river
levation of 155 m, this provided a ground spatial resolution
f 3 cm. The centre of each image was geo-referenced by a
elicopter-mounted GPS, allowing cross-registration with the

ig. 2 – Sample remotely sensed images: (a) panchromatic repres
rocessed to show D50. Parcel positions for 2004 have been over
7 ( 2 0 0 6 ) 505–511 507

survey station positions. Each image covered a ground area of
90 m × 50 m so despite the variation in parcel positions around
a single survey station all the parcels from a single station
were included within a single image. D50 was estimated for
each pixel using the semi-automated image analysis method
outlined by Carbonneau et al. (2004), which used local vari-
ogram analysis of the images, calibrated with ‘ground-truth’
measurements of D50, to provide remotely sensed estimates
of D50. Carbonneau et al. (2004) found that remotely sensed
measurements explained 96% of the variance in the D50s
determined by ground samples. D50s were estimated for both
the wet bed (beneath the water level in the imagery acquired
in August) and the dry bed (above the water level) because the
mean water level of the river changed throughout the year.
Thus, areas of dry bed would have been submerged when the
mean river water depth was greater than in August, and may
have had an impact on juvenile salmon habitat use. An exam-
ple of the remotely sensed imagery can be seen in Fig. 2. A
visual inspection of the data showed that some D50 estimates
of greater than 40 cm were actually the result of features on the
water surface, such as ‘white water’ induced by rapids rather
than coarse substrates. Additionally, riparian vegetation, river
debris and shadows from vegetation or debris caused spurious
estimates. Such areas were removed from further analysis.
The mean D50 of each image, using the entire wet and dry
substrate, was then estimated.

Relationships between juvenile salmon density and D50
were determined using preference models in which the par-
titioning of the D50 range into distinct partitions was deter-
mined by regression trees. Regression trees use binary recur-

sive partitioning to split a numeric response variable into
increasingly homogeneous subsets (partitions) at partitioning
nodes as a step function of one or more predictor variables
(in this study, the predictor variable was parcel D50 or mean

entation of the true colour images and (b) images
laid on the D50 images.
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D50 of the image). The advantage of using regression trees
is that, being non-parametric, they make fewer restrictions
on the type of variables that may be used. For example, they
allow for modelling relationships between response and pre-
dictor variables where the variance of the response variable is
a function of the predictor variable—a common occurrence in
the relationship between fish densities and the environment
(Terrell et al., 1996; Dunham et al., 2002).

Firstly, regression trees were fitted separately between each
of fry and parr density and (i) the parcel D50 of the ground
survey and (ii) the mean D50 of each remotely sensed image
(mean image D50) encompassing the parcel. Regression trees
were then pruned using cross-validation as a means of deter-
mining at what size (in terms of terminal nodes) the minimum
deviance was achieved. Additionally, any partition nodes,
which appeared to have resulted from over-fitting of the data
were removed. Preference models were then fitted according
to the method of Jacobs (1974) (Eq. (1)):

Pi = Si − Ai

(S + A ) × 2(S × A )
(1)
i i i i

where P is the preference for partition i, S the proportional
utilisation by juveniles of that partition and A is the propor-
tional availability of habitat in that partition. Preference mod-

Fig. 3 – Regression trees of fry and parr density against parcel D5
partition node show the D50 where partitioning results in minim
juvenile density of the respective partition.
1 9 7 ( 2 0 0 6 ) 505–511

els were fitted to each of parcel D50 and mean image D50 sepa-
rately, and to parcel D50 and mean image D50 together. Models
expressed preferences as varying from −1 (strongly avoided),
through 0 (neutral preference) to 1 (strongly selected). To iden-
tify the relative strength of using regression trees for deter-
mining the partitioning, additional preference models were
created where the partitioning had not been determined by
regression trees, but instead had been arbitrarily set as being of
equal width—firstly, using preference models with three parti-
tions (partition breaks at 12.1 and 24.2 cm) and secondly, using
preference models with six partitions (partition breaks at 6.05,
12.1, 18.5, 24.2 and 30.25 cm).

3. Results

In the multi-pass electro-fishing sample of 1994, the den-
sity estimates from the first pass explained, respectively,
75% and 77% of the variation in fry and parr density that
was obtained from three-passes using a maximum likelihood

method. Given this, it is reasonable to infer that a single-
pass electro-fishing approach was sufficient for determin-
ing the relationship between juvenile density and substrate
size.

0 and mean image D50. Values shown in bold above each
um deviance; values at each terminal node show the mean
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Fig. 4 – Preference models of fry and parr for parcel D50 and mean image D50. Partition breaks have been derived from the
respective regression trees. Preferences may vary from −1 (strongly avoided), through 0 (neutral preference) to 1 (strongly
s
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Table 1 – Fry preference according to optimal and
sub-optimal parcel and image D50s

Mean image D50

0–4.6 4.6–7.1 7.1–7.4 7.4–19.2 >19.2

Parcel D50
0–3.4 −0.63 −0.71 NA 0.24 NA
3.5–5.8 −0.03 0.28 0.47 −0.02 −0.39
9.8–10.6 NA NA 0.40 0.59 −1.00
>10.6 NA −0.63 NA 0.08 −0.62

Optimal ranges are shown in bold. Preferences may vary from −1
(strongly avoided), through 0 (neutral preference) to 1 (strongly
selected).

Table 2 – Parr preference according to optimal and
sub-optimal parcel and image D50s

Mean image D50

0–3.5 3.5–4.8 4.8–14.9 14.9–18.9 >18.9

Parcel D50
0–3.4 −0.94 −0.66 −0.82 NA NA
3.4–10.6 NA −0.09 −0.08 0.34 −0.27
>10.6 NA NA 0.29 0.55 0.08
elected).

The initial partition nodes of the regression trees differed
epending upon whether parcel D50 or mean image D50 was
sed: 3.4 cm (fry) and 10.5 cm (parr) for parcel D50; 19.2 cm

fry) and 4.8 cm (parr) for mean image D50 (Fig. 3). However,
reference models with the partitioning determined from the
egression trees were similar regardless of the method used
o determine D50 (Fig. 4). In both cases, fry selected finer
ubstrates than parr. There were some difference in ranges
f optimal D50 (defined as the range of D50 where prefer-
nce was greatest): for fry, optimal parcel D50 was from 9.8 to
0.6 cm and optimal mean image D50 was from 7.1 to 7.4 cm;
or parr, optimal parcel D50 was greater than 10.6 cm and
ptimal mean image D50 was 14.9–18.9 cm. The most obvious
ifference was that preference models fitted between parr and
ean image D50 showed a negative preference at D50s greater

han 18.9 cm, a feature that was absent in the model for parcel
50.

Mean image D50 explained a greater proportion of the vari-
nce in juvenile preference (r2 of 0.18 for fry and r2 of 0.29
or parr) than parcel D50 (r2 of 0.11 for fry and r2 of 0.22 for
arr). This suggested that the mean D50 of the habitat sur-
ounding the juveniles was more important that than the
50 of the precise location where they were found. This was

urther confirmed by preference models fitted between juve-
ile density and the D50s of the parcel and image together

Tables 1 and 2). For example, greatest parr preferences were
ound where optimal parcel D50 (greater than 10.6 cm) coin-

ided with optimal image D50 (14.9–19.9 cm), but preferences
ecreased when image D50 was sub-optimal (either by being

ess than 14.9 cm or greater than 18.9 cm). Additionally, greater
references were found when image D50 was optimal and par-

Optimal ranges are shown in bold. Preferences may vary from −1
(strongly avoided), through 0 (neutral preference) to 1 (strongly
selected).
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cel D50 was sub-optimal (less than 10.6 cm) than when parcel
D50 was optimal and image D50 was sub-optimal.

Preference models with partitioning determined by regres-
sion trees had a greater explanatory power than preference
models created using arbitrary partitioning. Using preference
models with three partitions of equal length, the proportion
of variance explained was 0.02 (fry and parcel D50), 0.10 (parr
and parcel D50), 0.03 (fry and mean image D50) and 0.04 (parr
and mean image D50); using preference models with six par-
titions of equal length, the proportion of variance explained
was 0.03 (fry and parcel D50), 0.13 (parr and parcel D50), 0.06
(fry and mean image D50) and 0.09 (parr and mean image
D50). That is, the proportion of variance explained increased
with an increase in the number of partitions, but was still less
than that explained using preference models with partitioning
determined by regression trees.

4. Discussion and conclusions

The shape of the preference models was consistent with those
that have been found in other studies, with parr selecting
coarser substrates than fry. However, the proportion of the
variance explained by the preference models in this study was
seen to be relatively small, never exceeding 30%. This is not
surprising given that only one habitat property was consid-
ered: other habitat variables including proximity to spawning
sites (Klemetsen et al., 2003), velocity and depth (Gries and
Juanes, 1998), predation (Dionne and Dodson, 2002), temper-
ature and light intensity (Heggenes and Dokk, 2001) will have
affected juvenile densities, and caused some of the unex-
plained variance in the preference models.

The main limitations of the previous application of pref-
erence models are that: (i) they are not presented with any
statistic describing their explanatory power and (ii) the means
by which the habitat range is partitioned into distinct classes
is arbitrary. Showing the explanatory power alongside the
model’s description of the shape of the relationship is impor-
tant because it allows the quantification of how much confi-
dence can be placed in the relationship, and aids comparison
between relationships established for different species or life-
stages, for different habitat properties or for the same prop-
erty sampled at different scales. For example, in this study
it was seen that the relationship between parr and D50 was
stronger than that between fry and D50. Partitioning in pref-
erence models is usually determined in an arbitrary fashion,
with no rationale given for how the width and position of the
partitions are determined—this width and position will affect
both the shape and strength of the established relationship.
In this study, by using the binary recursive approach of regres-
sion trees to achieve optimal partitioning, it was possible to
remove this subjectivity in fitting the models, and by doing so,
increase their explanatory power. It is therefore suggested that
this approach be considered for the construction of preference
models in the future.

The key-finding of this research is that synoptic habi-

tat data from remote sensing (that is, habitat data collected
over the entire river cross-section for an along-stream dis-
tance of approximately 50 m surrounding the fishing sta-
tion) were more effective for modelling juvenile salmon sub-
1 9 7 ( 2 0 0 6 ) 505–511

strate use than habitat data from a ground survey (collected
over the smaller 5 m × 20 m dimensions of the station). Most
previous studies have relied upon in situ habitat samples.
This has often limited habitat analysis to the determina-
tion of micro-scale relationships, a scale where there may
be low explanatory power given that fish are motile and
may use multiple habitats. In this study, preference mod-
els based on mean image D50 explained a greater propor-
tion of the variance in juvenile salmon density than those
based on parcel D50. This is particularly interesting given that
the remotely sensed imagery was acquired in only one of
the years in which salmon were sampled, whereas a parcel
D50 was acquired for every measurement of juvenile salmon
density—any temporal variation in substrate size across the 8-
year period in which juvenile salmon density was determined
would have adversely affected the relationship between den-
sity and mean image D50. It is proposed here that the rela-
tive lack of explanatory power of the parcel D50 was because
it only provided information on the substrate where the
juvenile salmon were found, and not on the surrounding
habitat that may have affected their density. For example,
an area of cobbles, which would be optimal habitat for fry
may not support a high fry density if it is surrounded by a
sub-optimal habitat of substrates that are much smaller or
larger.

We suggest that the parameters of the remote sensing mis-
sion used in this study have a temporal and spatial appli-
cability that will produce similar results in other river sys-
tems. That is, it is necessary to: (i) ensure a very high spa-
tial resolution because the minimum detectable substrate
size is dependent on the pixel size (such a resolution is cur-
rently only obtainable from an airborne platform), (ii) use
a sensor that can discriminate different wavelength regions
of the electro-magnetic spectrum (i.e. true-colour or mul-
tispectral) because this can help in determining channel
or riverbed properties, such as substrate size or depth, or
help in identifying features that it is necessary to mask,
such as vegetation or shadow and (iii) acquire the imagery
as near to mid-day as possible to ensure a high sun ele-
vation and minimise the effect of shadows from riparian
vegetation.
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