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Abstract

Identifying groups of individuals forming coherent genetic clusters is relevant to many fields of biology. This paper
addresses the K-partition problem: given a collection of genotypes, partition those genotypes into K groups, each group
being a sample of the K source populations that are represented in the collection of genotypes. This problem involves
allocating genotypes to genetic groups while building those groups at the same time without the use of any other a priori
information. FLOCK is a non-Markov chain Monte Carlo (MCMC) algorithm that uses an iterative method to partition
a collection of genotypes into k groups. Rules to estimate K are formulated and their validity firmly established by running
simulations under several migration rates, migration regimes, number of loci, and values of K. FLOCK tended to build
clusters largely consistent with the source samples. The performance of FLOCK was also compared with that of
STRUCTURE and BAPS. FLOCK provided more accurate allocations to clusters and more reliable estimates of K; it also
ran much faster than STRUCTURE. FLOCK is based on an entirely novel approach and provides a true alternative to the
existing, MCMC based, algorithms. FLOCK v.2.0 for microsatellites or for AFLP markers can be downloaded from http://
www.bio.ulaval.ca/no_cache/departement/professeurs/fiche_des_professeurs/professeur/11/13/.
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Detecting population genetic structure is central to many
fields of biology (e.g., Waples and Gaggiotti 2006).
Clustering individual genotypes into distinct groups without
the use of any a priori information, such as group
membership or individual location, can help identify
unsuspected conservation units, migrants, or admixed
individuals. The identification of such groups may be more
formally defined as the ‘‘K-partition problem,’’ which
consists in partitioning a collection of individuals, based
on trait(s) measurements such as genotypes, into subsets
corresponding to K distinct populations where K is not
known in advance. This amounts to a sorting process
without preexisting categories. The estimation of the
number of categories/clusters is based on secondary data
generated by this same sorting process. In a nutshell: from
a mixed bag of genotypes and nothing else, the aim is to
group together those genotypes that were drawn from the
same population. The terms ‘‘cluster,’’ ‘‘group,’’ and
‘‘reference’’ are considered synonyms in this paper.

Several algorithms have been developed with the
purpose of recovering biologically significant clusters from
a set of genotypes (e.g., Pritchard et al. 2000; Dawson and
Belkhir 2001; Francxois et al. 2006; Chen et al. 2007;
Corander et al. 2008; Guillot et al. 2008; Hubisz et al. 2009).
Most are variants of the pioneering approach of Pritchard
et al. (2000) using a model-based Markov chain Monte Carlo

(MCMC) algorithm to define k clusters containing groups
of genotypes maximizing Hardy–Weinberg and linkage
equilibrium (HWLE) and displaying allele frequency differ-
ences. However, the only programs designed to solve the
K-partition problem as we defined it above are STRUC-
TURE (Pritchard et al. 2000) and MGD (Rodriguez-Ramilo
et al. 2009). Other programs often inform the clustering
process with spatial information on individuals (e.g.,
Francxois et al. 2006; Guillot et al. 2008, 2009; Hubisz
et al. 2009) and/or the classification of samples on the basis
of sampling site or other criteria (STRUCTURE version 2.3,
Hubisz et al. 2009). STRUCTURE generally serves as
a benchmark in relative performance tests of genetic
clustering programs.

FLOCK (Duchesne and Turgeon 2009) is a clustering
program which was first introduced as a method for quick
mapping of admixture without source samples. In contrast
with the aforementioned clustering programs, it is not based
on MCMC sampling but on iterated reallocation (Figure 1
and Appendix I for a formal description of the algorithm).
First, FLOCK randomly partitions the collection of
genotypes into k groups (i.e., clusters). Allele frequencies
are estimated for each of the k groups, and each genotype is
reallocated to the group with the highest likelihood score
following the multilocus maximum likelihood method of
Paetkau et al. (1995). This results in another set of k groups.
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Because each group tends to attract similar individuals, these
new groups will be more homogeneous and better
differentiated. A round of reallocation is an iteration.
A series of such ‘‘iterations,’’ leading to a partition of all
genotypes into k groups, represents a ‘‘run.’’ Typically, within
5–10 iterations, the composition of the k groups either
becomes stable or changes very slightly from one iteration to
the next. This convergence was never observed to occur
beyond 30 iterations, irrespective of number of individuals
and number of loci. At the end of each run, FLOCK
calculates the log likelihood difference (LLOD) score for
each genotype, that is, the difference between the log
likelihood of the most likely cluster for this genotype and that
of its second most likely cluster as well as the mean LLOD
over all genotypes. For each run, FLOCK allocates each
genotype to the cluster with the highest likelihood score for
that genotype. Note that LLOD values are output variables;
they are not driving nor affecting the clustering process.

The very short processing time for each run of FLOCK
allows for comparing partitions from many runs for each k.
For any value of k, there is a huge number of possible
partitions (the space of all k-partitions), and there is only an
infinitesimal probability that two runs, each starting from
a random initial partition, hit on the same end-partition by
sheer luck. Indeed, there has to be something ‘‘attractive’’
about a partition that turns up more than once, and
accordingly, we refer to such a partition as an ‘‘attractor.’’
Each attractor has its own basin of attraction (Brin and
Stuck 2002), that is, a collection of partitions that are similar
enough to the attractor state that they will end up hitting this
attractor. Within the huge space of k-partitions, there may
be one or several basins of attraction, entirely covering that
space or not (Figure 2).

The set of runs that hit the same attractor can be
identified by FLOCK as runs that produce the very same
mean LLOD score. Each mean LLOD is computed with
a high degree of precision (14 decimals). Therefore, there is
an extremely high probability that two identical mean
LLOD values are associated with the exact same k-partition
of the collection of genotypes. A set of runs that hit the
same attractor (same mean LLOD value) will be termed
a ‘‘plateau’’ and their number the ‘‘plateau length.’’ When
several plateaus are generated, their associated lengths will

Figure 1. Schematic representation of the FLOCK

algorithm. Starting from a random partition of the total sample

(S) into k clusters (here, k5 2), a series of reallocations leads to

the formation of k clusters that are increasingly differentiated.

A formal description of FLOCK is provided in Appendix I.

Figure 2. Schematic representation of several FLOCK runs

traveling from one partition to the next through the space of all

partitions for a single value of k (the space of k-partitions). The

black dots do not stand for genotypes or clusters but for

a specific partition. Each curved arrow represents a run starting

from one random partition and ending on an attractor (a black

star) or a weak attractor (a small open star). Each rectangle is

associated with a single value of k and represents the space of

all k-partitions. Basins of attraction are bordered by a dashed

line. A weak attractor is the endpoint of only one run. In (a)

and (b), 1 and 2 basins of attraction cover the entire space of

k-partitions, respectively, such that all runs end on an attractor.

In (c), the space of k-partitions is not covered by the 2 basins

of attraction, such that runs may hit one of the attractors or end

on a weak attractor. In (d), there are no attractors in the space

of all k-partitions.
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be referred to as the ‘‘plateau sequence’’ for k. A ‘‘plateau
record’’ is the list of plateau sequences for each k value
requested by the user. We use the analysis of plateau records
to solve the K-partition problem. This analysis is termed
‘‘plateau analysis.’’ Appendix II shows how FLOCK
provides numerical and graphical information on plateau
sequences for many values of k.

Note that FLOCK is very different from other clustering
programs. It does not sample the space of partitions through
small random step walks as in MCMC, and it does not try to
optimize some target function, such as HWLE. Briefly stated,
it is not based on a probabilistic search algorithm. On the
contrary, FLOCK is entirely deterministic. The result of each
run depends solely on the composition of the initial randomly
created partition (iteration 0 on Figure 1). Thereafter, the
iterative reallocation process will always yield the same
sequence of partitions.

Here, we show that FLOCK provides highly reliable
solutions to the K-partition problem. This reliability is
established through simulations run under a large number of
parameter configurations involving migration rate, migration
regime, number of loci, and the number K itself. Based on
attractor information, a set of rules for estimating K are
tested and validated.

Materials and Methods

We used a 3-step approach. First, we ran FLOCK on several
empirical data sets both with microsatellite and AFLP
markers and for a wide variety of taxa (bird: Setophaga ruticilla;
fish: Coregonus artedi, Salmo trutta, Mallotus villosus, Anguilla
marmorata; mammals: Rattus rattus, Delphinapterus leucas;
insects: Enallagma hageni, E. ebrium, Gerris gilletei, Acyrthosiphon
pisum, Aphidius ervi; crustaceans: Calanus finmarchicus,
C. glacialis). For these data sets, K had been estimated with
a reasonable degree of certainty using other methods.
Plateau analyses on these data sets lead us to define 2 types
of ad hoc rules: stopping rules to determine the upper k

value beyond which to stop running FLOCK and estimation
rules for K (note that K refers to the true number of groups/
populations while k denotes the user-defined parameter that
forces clustering into k clusters). The second step consisted
in validating those rules on simulated data sets that spanned
a large array of parameter values. Finally, FLOCK,
BAPS, and STRUCTURE were also compared for accuracy
in estimating K and in retrieving the original cluster
compositions.

Observations Based on Empirical Data

With each data set and each of many values of k, 50 runs
were performed, and we observed 0, 1, or several plateaus of
variable lengths. Two major observations were made:
plateaus tended to be longer when k was equal to the
estimated value of K and plateaus always eventually vanished
with increasing values of k. With some data sets, some value
of k, say k#, produced a single plateau, and the length of this
plateau was �6 (runs among 50). Then, k# was equal to the

presumed value of K. This condition (a single isolated
plateau of length �6) is a stopping rule for the sequence of
k values with which to run FLOCK because it is no use
considering higher values of k to estimate K. The point
estimate K 5 k# is the estimation rule associated with this
stopping rule. With other data sets, it was found that
whenever plateaus were absent for 4 successive values of k,
then no plateau was ever observed for higher values of k.
Then, the largest value of k comprising a plateau of
length �6 (runs among 50), say k#, was always smaller or
equal to K. Consequently, this condition (4 successive values
of k with no plateau) was taken as a second stopping rule. It
is associated with an estimation rule whereby k# is a lower
bound for K, that is, K � k#. Lower bound estimates will be
referred to as kþ estimates where kþ 5 {k, k þ 1, k þ 2,
k þ 3, k þ 4, . . . }. When there are no plateaus of
length �6, no estimates are provided for K, and the plateau
analysis yields an ‘‘undecided’’ verdict. Appendix II presents
a flowchart diagram detailing how stopping and estimation
rules are applied in association with examples of plateau
records.

Validation Tests Based on Simulated Data Sets

Simulated data sets were obtained using EASYPOP (Balloux
2001) and combining parameter values as per Waples and
Gaggiotti (2006), including mutation rate dynamics. In brief,
each simulation was run for 5000 generations in an attempt
to reach approximate mutation-drift equilibrium, each
population comprising 500 individuals (sex ratio 1:1).
Genotypes in the initial generation were randomly drawn
from all 10 possible allelic states (Max diversity). Three
parameters of interest were varied, namely Nm, the average
number of individuals migrating to another population; the
number of loci (L); and K, the true number of populations.
Simulated data sets were generated for 2 migration models:
finite island and stepping stone. Altogether, values ofNm, L,
and K and migration models span a very wide set of
parameter conditions. For the finite island model, a simula-
tion was performed for all 60 combinations of several
values for Nm (0.01, 1, 5, 375), L (10, 20, 30, 40, 50), and K

(2, 4, 8). For the stepping stone model, 20 simulations were
performed using the above values for Nm and L. The
number of populations was K5 8 because results specific to
the stepping stone model were less likely to be apparent
with K5 4 and would be absent with K5 2. For the sake of
comparison, genetic differentiation (hST) was estimated with
FSTAT 2.9.3.2 (Goudet 2002) at 0.38, 0.14, 0.03, and 0.001
for the island model (K 5 4 and L 5 30) and at 0.39, 0.21,
0.03, and 0.001 for the stepping stone model (K 5 8,
L 5 30) for Nm 5 0.01, 1, 5, and 375, respectively.

One simulated data set was generated for each of the
parameter combination and migration regime described
above. For each of those data sets, a random sample of
30 individuals per population was taken to perform 50 runs
of FLOCK for successive values of k until one stopping
condition was reached. The stopping and the K-estimating
rules were tested on the plateau records automatically
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generated by FLOCK. The proportion of genotypes
allocated to the right cluster was also computed. Only the
allocations corresponding to the k value involved in the
estimates (as in K 5 k or K 5 kþ, see Results) were
assessed.

Performance Comparisons with Other Programs

FLOCK was first compared with STRUCTURE (Pritchard
et al. 2000) and BAPS (Corander et al. 2008), currently the
two most widely used clustering programs. To this purpose,
we used published data sets from Latch et al. (2006) for 5
FST levels (0.01, 0.02, 0.03, 0.04, and 0.05) where clustering
proved challenging. Each set comprises 5 population
samples (each including 100 genotypes at 10 codominant
unlinked loci), and therefore, K 5 5 is the target estimate.
K-estimates and proportion of correct allocations for
STRUCTURE and BAPS (version 3.1, Corander et al.
2005) are reported from Latch et al. (2006). FLOCK was
run on each data set with k starting from 2 and increasing
on until one stopping condition was reached. For each data
set and each k value, 50 runs were performed, and the
number of iterations per run was 20.

Second, a closer comparison between FLOCK and
STRUCTURE was performed by running both programs on
data sets simulated as above. Five replicate data sets were
used for each of 9 combinations (Nm 5 5; L 5 10, 30, and
50; K 5 2, 4, and 8; island model). Nm 5 5 was chosen
because it defines a zone where clustering is difficult enough
that other parameters become very influential but without
making the clustering problem generally insoluble (Waples
and Gaggiotti 2006, see also Results). The running
parameters for FLOCK were as above, and K was estimated
based on plateau analysis as described previously. For the
STRUCTURE program, we used parameter levels fre-
quently found in the current literature. For each run, burn-in
was set at 50 000, the number of iterations was 200 000, and
the admixture model with correlated allele frequencies was
chosen. We performed 10 runs for each value of k, from
k 5 1 to K þ 3. The most likely number of clusters, K, was
estimated using the standard criteria of Pritchard et al.
(2000, i.e., the highest Pr(X|k)) and that of Evanno et al.
(2005, i.e., the highest second order rate of change of
Ln[Pr(X|k)]). FLOCK was compared with STRUCTURE
for accuracy in estimating K and for the proportion of
correct allocations. In addition, computing times for both
programs were collected on a PC with an Intel Corel Duo
CPU, E6750 2.66 GHz and 3 Go of RAM.

Results

In the following sections, an estimate for K will be
considered correct when K is equal to the point estimate k

or when K is equal to the lower bound k in kþ. The term
undecided will be used whenever there are no plateaus of
length �6 on observing 4 consecutive values of k with no
plateaus. This is equivalent to a nonestimate.

Validation Tests Based on Simulated Data Sets

Results of the plateau analysis for simulations under the finite
island migration model are reported in Table 1. Among the
simulations with lower migration rates (Nm 5 0.01 and 1),
there was a majority of point estimates. In all cases, the point
estimates were equal to K. For Nm 5 5, most results were
correct lower bound estimates, but the number of undecided
increased with K. Simulations with a very high migration rate
(Nm 5 375), equating to panmixia (Waples and Gaggiotti
2006), were all evaluated as undecided.

Results of the plateau analysis with the stepping stone
migration regime are reported in Table 1. At a low migration
rate (Nm 5 0.01), point estimates were obtained and always
correct. For Nm 5 1, the output was mixed, with 3 point
estimates, all correct, and 2 lower bound estimates, 1 correct
and 1 incorrect (7þ). With Nm 5 5, there were only lower
bound estimates (kþ), and all were incorrect. For kþ
estimates, all true K values were either equal to k or larger,
thus confirming that K is always bounded below by k in kþ
estimates. Interestingly, when migration and admixture were
higher, FLOCK tended to produce smaller lower bounds for
K in a stepping stone regime and more undecided in a finite
island regime, as if the whole structure vanished all at once.

Overall, FLOCK tended to allocate most individuals
from the same sample to the same cluster. The average
proportion of correct allocations for point estimates was
99.6%, indicating that the collection of genotypes was
efficiently sorted into its K sources. For correct lower bound
estimates (kþ), proportions of correct allocations were at
least 80% and averaged 91.7%.

Table 1 Estimated values of K in simulations with the finite
island and the stepping stone migration models for different
combinations of number of populations (K ), number of loci (L),
and migration rate (Nm)

Model K L

Nm

0.01 1 5 375

Island 2 10 2 2 2+ Undecided
20 2 2 2+ Undecided
30 2 2 2+ Undecided
40 2 2 2+ Undecided
50 2 2 2 Undecided

4 10 4 4+ Undecided Undecided
20 4 4 Undecided Undecided
30 4 4 4+ Undecided
40 4 4 4+ Undecided
50 4 4 4+ Undecided

8 10 8 8+ Undecided Undecided
20 8 8 Undecided Undecided
30 8 8 8+ Undecided
40 8 8 Undecided Undecided
50 8 8 Undecided Undecided

Stepping stone 8 10 8 8+ 4+ Undecided
20 8 8 4+ Undecided
30 8 7+ 7+ Undecided
40 8 8 7+ Undecided
50 8 8 6+ Undecided
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Performance Comparisons with Other Programs

Data Sets of Latch et al. (2006) with K 55 for Various FST
Levels

Table 2 shows the estimates for K when FLOCK was run
on Latch et al. (2006) data sets. The point estimates and the
lower bound estimates for K were all correct except for one
point estimate (K 5 2) at FST 5 0.03 (Table 2). At the 2
lowest FST levels (0.01, 0.02), K was always undecided.
Here, FLOCK was able to explicitly signal that it cannot
detect distinct clusters, indicating either that the data set is
not structured into genetic clusters, as in panmixia, or that
the genetic information (essentially the number of poly-
morphic loci) is not sufficient to distinguish clearly
between clusters. By contrast, Latch et al. (2006) reported
that STRUCTURE produced K 5 1 point estimates for all
replicates at FST 5 0.01 and only wrong estimates at
FST 5 0.02. It thus appears that the posterior probabilities
for K were never flat enough to avoid yielding a (wrong)
point estimate. Similarly, these authors indicated that at
FST 5 0.02, K-estimates from BAPS stood between 2 and
4, and the probabilities associated with the apparent most
likely number of clusters were extremely high. Thus, when
FST is low, FLOCK yielded a safe undecided conclusion,
whereas the other programs often provided incorrect point
estimates.

Taking the clusters produced at k 5 5 for both K 5 5
and K 5 5þ estimates, the average % of correct allocations
was very high (�96%) at all FST levels except 0.03 (88.8%).
With FST 5 0.03, 0.04, 0.05, the average % of correct
allocations was generally higher than those of STRUCTURE
and BAPS (Figure 3a). Sign tests performed based on the
number of instances where the % of correct allocations was
higher for FLOCK than for STRUCTURE and BAPS

produced P values of 0.019 and 0.032. Therefore, the
clusters built by FLOCK resembled more closely the
original samples from the 5 populations.

In sum, FLOCK generally provided more accurate
allocations to clusters and, even more importantly, safer
more reliable K-estimates than both STRUCTURE and
BAPS. However, compared with those 2 programs, FLOCK
was sometimes more conservative when information
became scarce for the running task.

Data Sets from EASYPOP with Nm 5 5

K-estimates from FLOCK and STRUCTURE (using the
criterion of Pritchard or Evanno) are reported in Figure 4.
As expected, the largest differences between the 3 methods
appear with the lower numbers of loci, especially when
L 5 10. With lower levels of information, FLOCK tended
to output an undecided, STRUCTURE/Pritchard a K 5 1
estimate, whereas STRUCTURE/Evanno produced
a range of estimates most of them incorrect. Overall,
FLOCK produced 28 correct estimates, 2 incorrect
estimates, and 15 undecided. As for STRUCTURE/
Pritchard, 21 estimates were correct and 24 were incorrect,
including 21 K 5 1 estimates.

The most striking difference between FLOCK and
STRUCTURE/Pritchard appeared when K 5 2. Indeed,
FLOCK showed an increasing advantage in power as the
number of loci decreased. The STRUCTURE/Pritchard
estimates were K 5 1 for all 5 replicates with L 5 10 and
L 5 30, whereas FLOCK gave a K 5 2þ estimate for 7 of
those 10 data sets. Even with L 5 50, STRUCTURE/
Pritchard still output K 5 1 estimates for 2 of the 5 data
sets, whereas FLOCK’s outputs were K 5 2 (1 set) or K 5

2þ (4 sets).

Table 2 Results from running FLOCK on the simulated data sets from Latch et al. (2006)

FST Data set number Plateau sequence (with PL � 6) K-estimate Most likely number of clusters % Correct allocation

0.01 1–5 — Undecided None —
0.02 1–5 — Undecided None —
0.03 1 6, 4, 3, 4 5þ 5 91.6

2 6, 2, 2 5þ 5 86.0
3 — Undecided None —
4 12 2 2 —
5 — Undecided None —

Mean: 88.8
0.04 1 7, 3, 4, 5, 7, 2, 2 5þ 5 96.4

2 2, 8, 2, 2 5þ 5 95.0
3 4, 4, 4, 18 5þ 5 96.8
4 3, 7, 2, 3 5þ 5 96.6
5 23, 25 5þ 5 97.0

Mean: 96.4
0.05 1 7, 2, 22, 14 5þ 5 98.8

2 46 5 5 98.8
3 7, 38 5þ 5 99.2
4 43 5 5 99.0
5 47 5 5 98.6

Mean: 98.9

For each FST level and each data set, the results from FLOCK were submitted to plateau analysis (see Appendix II). The resulting estimate for K, the most

likely number of clusters (if any), and the % of correct allocations are given when appropriate. Plateau lengths (PL) � 6 are printed in bold.
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To summarize, STRUCTURE/Pritchard produced more
incorrect estimates than FLOCK and identified all replicates
with K 5 2, L 5 10 and 30 as originating from a single
population. STRUCTURE/Evanno output increasingly,
broadly scattered, unreliable K-estimates as the number of
loci decreased. Therefore, we will not consider the latter
approach in further analyses, and so STRUCTURE/
Pritchard will be referred to simply as STRUCTURE.

Proportions of correct allocations were established when
both programs produced correct estimates for K (Figure 3b).
For STRUCTURE, the proportion of correct allocations
ranged from 0.817 to 1, averaging 0.895. For FLOCK,
the proportions were generally higher, ranging from 0.887
to 0.987 with an average of 0.943. The differences in
proportions of correct allocations between FLOCK and
STRUCTURE averaged 0.044. A sign test was performed
on those differences, and a statistically significant P value of
0.009 was obtained. So it appears that FLOCK restores the
original clusters consistently better than STRUCTURE.

Computing time was much shorter for FLOCK than for
STRUCTURE (Supplementary Material and Figures S1 and

S2). On a per run basis, the STRUCTURE/FLOCK time
ratios ranged from 225 to 75, depending on the parameter
combination, that is, the number of genotypes (from 60 to
240 for K 5 2 to K 5 8), the number of loci (L), and the
value of k (the number of clusters required by the user).
Under most parameter conditions, the time ratios were close
to 100. If one considers the total number of runs that were
performed to estimate K, FLOCK total run time was, on
average 5% that of STRUCTURE (observed range:
3.4–7.1%). This corresponds to 50 runs per k value
until a stopping condition for k was met for FLOCK and
10 runs per k value for k 5 1 to K þ 3 for STRUCTURE.
It is worth noting that under empirical conditions,
STRUCTURE would often be run for higher values of
k given that K is unknown.

Discussion

The FLOCK solution to the K-partition problem is based
on the analysis of the lengths of plateaus over several values
of k, referred to as ‘‘plateau analysis.’’

The program is run with increasing values of k, starting
with k5 2, until 1 of 2 stopping conditions are met. That is,
one isolated plateau of length ‡6 is found, or there are 4
successive values of k for which plateaus are entirely absent.
For each condition, there is a corresponding estimation rule
for K, the true number of populations represented in
the collection of genotypes. The rules may lead to a point
(K 5 k) or a lower bound estimation (K � k). Admittedly,
lower bound estimates are less satisfactory than point
estimates, but they are by no means useless. Indeed, a lower
bound estimate signals that more than k clusters may exist
and also that more loci should be added if one seeks a valid
point estimate. Moreover, with most data sets, lower bounds
coincided with K. When returning an undecided, FLOCK is
in fact producing an ‘‘I don’t know’’ statement that may
signal a case of panmixia or a lack of resolution due to
scarcity of information. In our opinion, this signal is clearly
preferable to an erroneous estimate.

The provision of a complete set of stopping rules
derived from an array of extensive simulations is one
important feature of the FLOCK program. To our
knowledge, sets of complete and unequivocal stopping
rules are absent from other genotype partitioning programs
searching for the true number of genetic groups K within
a sequence of k values. With most of those programs, K is
estimated by searching for k associated with the maximum
value (mode) of some output variable, for example, Ln P(D)
(STRUCTURE, Pritchard et al. 2000), DK (STRUCTURE,
Evanno et al. 2005), deviance information criterion (TESS,
Francxois et al. 2008), and npop (GENELAND, Guillot et al.
2005). However, no clear criteria are provided to the user as
to the choice of an upper bound for the sequence of k

values. This is an important problem because a lack of
resolution or absence of HWLE clusters may translate into
exceedingly large or even unbounded values of the indicator
variable as a function of k. Then, the questions as to when is
one to stop increasing k and how is one supposed to

Figure 3. Average proportion of correct allocations (a) with

FLOCK, STRUCTURE, and BAPS for FST 5 0.03, 0.04, and

0.05 (values for BAPS and STRUCTURE from Latch et al.

2006) and (b) with FLOCK and STRUCTURE (Pritchard

criterion) for K 5 2, 4, and 8 with 10, 30, and 50 loci (L). Each

average was computed over all cases where the most likely

number of clusters was equal to the true value K.
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estimate the true value K cannot be answered on a firm,
objective ground. Typically, when those same programs are
tested for validity, this difficulty is often eluded by choosing
K þ 1 . . . 3 as an upper bound (e.g., Pritchard et al. 2000;
Evanno et al. 2005; Chen et al. 2007; Hubisz et al. 2009).
Now clearly, this borders on begging the question since K is
precisely the main unknown to solve for when analyzing
empirical data sets as opposed to simulated data. Not
surprisingly, some studies have shown that the choice of the
maximum value of k that is investigated might have an
important impact on the estimation of K (Frantz et al. 2009;
Guillot 2009).

Compared with STRUCTURE, currently the most
widely used cluster program, FLOCK was found to provide
more reliable estimates for K, a better match between the
clusters it builds and the original samples, and much shorter
computing times per run. Furthermore, FLOCK’s lower
error rate in estimating K does not come at the expense of
an excessive proportion of undecided cases. In fact,
comparisons of K-estimations showed that either program
may be more efficient in the low information range
depending on the generating conditions of the data set.

With the data sets of Latch et al. (2006), we observed an
intermediate zone where information level was sufficient for
STRUCTURE to output accurate K-estimates but scarce
enough that FLOCK often stuck to an undecided (I don’t
know) answer. However, with still lower levels of
information, STRUCTURE continued to output point
estimates, but those were incorrect and therefore the
resulting clusters were spurious.

By contrast, FLOCK showed more power when
processing the Nm 5 5, K 5 2 and L 510, 30 data sets
generated by EASYPOP. And so, it seems that low
information level is not alone in determining which
program retains its K-estimation capability longer. We
contend that introgression levels may be at play here.
Indeed, the Latch et al. (2006) data did not integrate
a migration process. With Nm 5 5, EASYPOP gradually
homogenizes populations over 5000 generations. When
K 5 2, this should translate earlier than with higher values
of K into highly homogenized populations. In fact, with
K 5 8, any pair of populations will retain its distinctiveness
longer than 2 populations (K 5 2) that exchange migrants
only between themselves generation after generation. Since
STRUCTURE is searching for clusters that are in HWE
and LE, it is bound to perform best when dealing with
populations experiencing weak migration. On the other
hand, FLOCK will simply sort the genotypes from
populations A and B into more A_like and more B_like
clusters, hence its robustness when tackling high levels of
introgression. We believe that this may explain why
STRUCTURE shows more power when migration is low,
whereas FLOCK shows more when migration is high and
sustained for numerous generations.

Conclusion

The K-partition problem is difficult to solve because it
involves allocating genotypes to genetic groups while

Figure 4. Comparisons of K-estimates from FLOCK and STRUCTURE (using Pritchard or Evanno criteria) for 5 replicates of

simulated data sets with 10, 30, or 50 loci (L) when (a) K5 2, (b) K5 4, and (c) K5 8. The ‘‘undecided’’ from FLOCK are shown

with a different filling as they indicate that there may be any number of clusters (K � 1).
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building those groups at the same time. Instead of MCMC
sampling the gigantic space of possible partitions (Hubisz
et al. 2009), FLOCK seeks solutions by iterating a realloca-
tion process and identifying attractors within the space of
k-partitions. Quick convergence allows for obtaining and
comparing partitions from numerous runs for each of
several values of k.

A set of stopping rules was derived from an array of
extensive observations. This set of rules is complete: when
running a sequence of k starting with k 5 2, 1 of the 2
stopping conditions is always met. The stopping rules are
precisely defined and leave no room for subjective
interpretation.

Validation spanned a wide array of empirical conditions,
including 2 migration regimes. Comparisons with STRUC-
TURE, over a larger number of data sets showed that
FLOCK was more reliable. FLOCK also tended to build
clusters that matched the original samples better. It was also
computationally more efficient.

The latest version of FLOCK offers several features
to facilitate plateau analysis and the application of the
estimation rules for K. FLOCK version 2.0 can be run for
several values of k in a single batch process. For each
value of k, plateaus are highlighted by printing in bold
identical mean LLOD values. Also, a separate output file
is automatically generated which reports the length of
each plateau for each value of k (plateau record). Based
on this file and the ad hoc rules (Appendix II), K is
quickly estimated without any further computer processing.
FLOCK v.2.0 for microsatellites or for AFLP markers can
be downloaded from http://www.bio.ulaval.ca/no_cache/
departement/professeurs/fiche_des_professeurs/professeur/
11/13/. Because FLOCK is not model based, it can
accept any type of categorical trait description, for
example, pertaining to morphology, physiology, etc., and
also combinations of various types of traits, genetic,
and nongenetic. Categorical trait scores may easily be
coded through dummy binary variables and then fed into
FLOCK for AFLP.

Supplementary Material

Supplementary material can be found at http://www.
jhered.oxfordjournals.org/.
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Appendix I: Description of the Iterated
Reallocation Algorithm Implemented by
FLOCK

Take a collection of genotypes and a number k of clusters
(k required by the user). We describe iterated reallocation
from the perspective of some generic genotype G.

First, the collection of genotypes is randomly partitioned
into k clusters of (nearly) equal sizes. The clusters are
identified as (C 0

1 ;C
0
2 ; . . . ;C

0
k ).

Then, G undergoes an ‘‘iteration’’ comprising the
following steps:

1) G is withdrawn from its cluster.
2) The allelic frequencies are computed for each of the

k clusters (C 0
1 ;C

0
2 ; . . . ;C

0
k ).

3) The likelihoods (a la Paetkau) of G relative to each cluster
are computed.

4) G is allocated to the cluster with highest likelihood.

Once this is done for each G, a new partition
(C 1

1 ;C
1
2 ; . . . ;C

1
k ) of k clusters has been generated.

The next partition (C 2
1 ;C

2
2 ; . . . ;C

2
k ) is calculated by

performing another iteration in the same fashion but now
taking (C 1

1 ;C
1
2 ; . . . ;C

1
k ) as the reference partition to

compute the likelihoods. And so on until as many iterations
as requested by the user have been completed.

Notes:

1) Apart from the initial random partition, this algorithm is
entirely deterministic. In other words, starting with
(C 0

1 ;C
0
2 ; . . . ;C

0
k ), the sequence of ensuing partitions will

always be the same.
2) The number of iterations is 20 by default since by then

convergence will have taken place in the vast majority of
cases. Typically, the first step from the initial partition
(partition 0) to the next is a great leap forward relative to
the following steps, that is, it greatly reduces the distance
between partition 0 and partition 20. The next step will
also be the largest one compared with the remaining ones
and so forth. As a result, convergence will nearly be
reached within the first 5 iterations in most cases.

3) Each genotype G plays 2 roles at each iteration. It is
allocated to the current partition (minus G) and, because it
belongs to the partition, it is contributing to the reallocation
of all other genotypes. So G is both an argument of
the procedure (allocated) and a part of the current
procedure through its membership to one of the clusters.
Those allocated/allocating reciprocal functions actually
define a positive feedback mechanism that largely explains
the speed of convergence of iterated reallocation.

Appendix II: Estimating K with FLOCK

a) Decision flowchart to estimate K with FLOCK when
performing 50 runs. Step 1 consists in reaching a stopping
condition for the maximum k value to consider. Step 2
leads to a point estimate (K 5 k#, 2A) or a lower bound
estimate (K � k#, 2B) for K.
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Example 1: Example 2:

Plateau Record: Plateau Record:

k Plateau sequence Figure k Plateau sequence Figure

2 2,3,2,3,3,2 a 2 5,6,13 —
3 3,5 b 3 6,2,3 —
4 23,3,16 c 4 0 —
5 33 d 5 0 —
Decision flow: 1A/2A;
K 5 5

6 0 —

7 0 —
Decision flow: 1B/2B/i;
K � 3

9

Duchesne and Turgeon � FLOCK Solution to the K-problem

 at B
ibliotheque de l'U

niversite L
aval on M

ay 22, 2012
http://jhered.oxfordjournals.org/

D
ow

nloaded from
 

http://jhered.oxfordjournals.org/


b) Examples of plateau analysis to estimate K. In Example 1,
the mean LLOD per run is plotted in decreasing rank
order for the 50 runs performed for each value of k (2 to
5, figure a to d, respectively). Runs with identical mean
LLOD values form plateaus and are indicated by square
symbols. Plateau lengths for each k form the plateau
record, and this record is used to follow the decision
flowchart. In Example 2, stopping rule 1B applies, and
a lower bound estimate of K � 3 is obtained.
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