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Abstract

Identifying and estimating individual and/or population admixture is a very common
objective in evolution and conservation biology. There are many situations where samples
from one or many of the putatively hybridizing entities are not available or easily identified.
Here we describe FLOCK, a new method especially designed to provide spatial and/or
temporal admixture maps in the absence of one or several source samples. FLOCK is a non-
Bayesian method and therefore differs substantially from previous clustering algorithms.
Its working principle is repeated re-allocation of all collected specimens (total sample) to
the k subsamples, each re-allocation being more effective than the previous one in attracting
genetically similar individuals. This snowball effect, more formally referred to as a positive
feedback mechanism, makes FLOCK an efficient and quick sorting process. The usage of
FLOCK is illustrated with two empirical situations which have been thoroughly analysed
previously with other approaches. A number of simulations were run to better assess the
power of the FLOCK algorithm. Performance comparisons were made between the FLOCK
and Structure algorithms. When non-negligible numbers of pure genotypes were present,
the two performed equally well. However, FLOCK proved significantly more powerful in
the absence of pure genotypes. Moreover, FLOCK showed more potential for fast processing.
Run times were shown to increase linearly with size of total sample and with size of k, the
number of reference samples from which admixture mapping is performed.
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Introduction

The concept of biological population is as central to biology
as it is difficult to define. On the one hand, the multiple
facets of the population concept derive from the alternative
cohesive mechanism, either demographic or reproductive,
that is pertinent to the question one asks and the tools one
utilizes (e.g. Waples & Gaggiotti 2006). On the other hand,
connectivity among groups of conspecific individuals
necessarily blurs the delineation of populations. From an
evolutionary standpoint, spatially discrete, demographically
stable and isolated populations are relatively easy to identify
because they often possess distinct genetic features. However,
reproductive connectivity among distinct groups of indi-
viduals is common and results in individuals having
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ancestry in more than one such group. These genetic
exchanges may be viewed as gene flow, introgression or
hybridization, or more generally, as genetic admixture.

Identifying and estimating individual and /or population
admixture is a very common objective in evolution and
conservation biology. Hybrid zones are often revealed in
studies of ancient or contemporary colonization patterns
(e.g. Hewitt 2000) and they are widely used to study speciation
mechanisms and selection processes (e.g. Barton & Hewitt
1985; Mavarez et al. 2006). Conservation biology also makes
wide use of information about genetic admixture, for
example, to evaluate the impact of supplementing wild
native populations (e.g. Hansen 2002), to estimate genetic
restoration potential (e.g. Hansen et al. 2006) or to analyse
and monitor the spread of intentionally re-introduced
populations or species (e.g. Hedrick & Fredrickson 2008;
Jacobsen et al. 2008) as well as hybridizing invasive species
(e.g. Boyer et al. 2008).
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Admixture analyses most often rely on the distinctive
genetic characteristics of “pure” populations or species to
estimate the degree to which putatively admixed individuals
resemble one or the other references (e.g. Barton & Hewitt
1985; Smouse et al. 1990; Dupanloup & Bertorelle 2001;
Pella & Masuda 2001, 2006). However, there is a wealth of
situations where samples from one or many of the putatively
hybridizing entities are not available or easily identified.
Indeed, pre-admixture reference samples are often missing
in cases of recent admixture caused by human action.
Examples include (i) hybridization of domesticated lineages
with wild ancestors that produce hybrids phenotypically
similar to wild specimens (reviewed in Randi 2008); (ii)
invasion and asymmetrical introgressive hybridization
potentially leading to the absorption and the extinction
of one gene pool (Rhymer & Simberloff 1996; Perry et al.
2001); (iii) admixture of recently diverged species following
environmental homogenization (reviewed in Seehausen
et al. 2008); (iv) mixing of regional cultivars or domestic
races aided by recent commercial exchanges among previ-
ously isolated regions (Allinne et al. 2008); and (v) intentional
supplementation of declining wild populations without
historical tissue collection of the indigenous populations
(e.g. Taylor et al. 2007).

Here we describe FLOCK, a new method especially
designed to provide spatial and/or temporal admixture
maps in the absence of one or several sources, sometimes
called “pure’, samples. Specifically, its primary goal is to
capture the remnant signal of past, pre-admixture, differ-
entiation among formerly genetically distinct groups.
FLOCK attempts to do so by grouping contemporary
admixed specimens along their ancestral differentiation
lines. Once performed with reasonable resolution, this
reconstruction can then be used to estimate levels of
individual and sample admixture as well as to draw spatial
and temporal admixture maps. It should be noted that the
expression ‘without source samples” does not mean that
FLOCK can be used to identify nonsampled sources. FLOCK
will deal with samples comprising specimens of various
degrees of admixture but nonsampled genetic components
will be ignored. Loosely speaking, it is a ‘clustering” method
in that it starts out with all collected specimens and proceeds
to part this one global sample (S) into some number k of
genetically differentiated subsamples. However, its work-
ing principle does not involve a probabilistic walk through
the space of all possible k-partitions of sample S as is the case
with clustering algorithms such as Structure (Pritchard et al.
2000), Baps (Corander et al. 2003) and NewHybrids (Ander-
son & Thompson 2002). Partition (Dawson & Belkhir 2001)
is another clustering program. However, since it is assuming
Hardy—Weinberg and linkage equilibrium, it is not suitable
for the analysis of samples originating from genetic groups
in the process of becoming admixed and, consequently, that
are in nonequilibrium, dynamically transient, states.

Generally speaking, FLOCK is a non-Bayesian method
and therefore differs substantially from previous clustering
algorithms. Its working principle is repeated re-allocation
of S to the k subsamples. Since each subsample will tend to
attract similar individuals, repeated re-allocation will exert
a filtering effect by progressively building up homogeneity
within and differentiation between subsamples. As the
subsamples get more and more differentiated, they become
more and more effective attractors of whatever specimens
are still in the ‘wrong basket’ (see Fig. 1). This snowball
effect, more formally referred to as a positive feedback
mechanism, makes FLOCK an efficient and quick sorting
process. More intuitively, it may be said that FLOCK does
not divide up sample S but sets the stage for specimens
to agglutinate according to resemblance as in ‘birds of a
feather flock together’.
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Fig. 1 Illustration of the FLOCK procedure. (a) The initial sample
S is randomly divided, here into k = 2 subsamples to form X' and
Y'. Iterative reallocation (=>) generates successive states (E') with
increasingly different subsamples X' and Y. The final X" and Y*
subsamples may serve as reference groups to allocate individuals
from S and thereby estimate and map individual or group
admixture levels. (b) the re-allocation matrices obtained with
the Lake ciscoe data from Turgeon & Bernatchez (2001b). The
numbers result from applying the re-allocation procedures
described formally in a). For instance, in E?, 152 stands for the
number of X' genotypes re-allocated to X' (X' => X") while 185
stands for the number of Y' genotypes now allocated to X'
(Y' => X"). The total number of X? is therefore 337.
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FLOCK algorithm and rationale

Let us suppose that some mixed sample S of genotypes is
made up of specimens variously admixed between two
originally distinct genetic groups, say G, and G,. Here “distinct’
means that those groups are genetically differentiated. The
purpose of the FLOCK procedure is to separate the specimens
that are most alike G, from those that are most alike G,.
Moreover, we assume that, save the genotypes, no information
is available that could inform the separation process.

Suppose the mixed sample S is divided into two arbitrary
subsamples of equal sizes, X'and Y}, and that the genotypes
of X! and Y! are re-allocated, resulting in the production of
subsamples X* and Y. Re-allocations are performed following
multilocus maximum likelihood (Paetkau ef al. 1995) and the
leave-one-out procedure. Now there is a very high proba-
bility that either X' or Y' is more similar to G, than itis to G,.
Without loss of generality, assume X' closer to G,. Then any
G,-like specimen will be more likely re-allocated to X' than
to Y'. Therefore, the genetic contents of X2 relative to the con-
tents of X' will be more G;-like. Clearly one could focus on
G,-like specimens and apply an analogous line of reasoning.

Through repeating the above procedure, one would
obtain sequences of X' and Y', one of which increasingly
more G,-like and the other increasingly more G,-like (see
Fig. 1). This iterative process starting from a random division
of the sample S is the FLOCK procedure. However, FLOCK
is not restricted to separation into two reference groups. It
can in fact be applied to any number k of component
groups within the mixed sample S.

Re-allocation number matrices are a handy representa-
tion of the output of FLOCK as it performs re-allocations in
succession (Fig. 1). They are especially useful in assessing
output stability and therefore the number of re-allocations
to reach it. Re-allocation number matrices, stability criteria
and sufficient number of re-allocations are described in
more detail in the Appendix. Another useful representa-
tion of FLOCK results is the difference in allocation
log-likelihoods to the reference groups of each individual
(LLOD score). The representation of individual or sample
mean LLOD scores over space, time, or any other meaningful
ordination axis, generates a map of admixture level in S.

Validation of k groups

When FLOCK is run with some k value, it necessarily
separates the mixed sample S into k groups. Some of these
groups may not reflect existing biological structure but
some chance structure at the sample level. There is therefore
aneed to validate the k groups.

Validation can be performed in several ways. Each vali-
dation involves information other than the one provided
by the mixed sample of genotypes (S). Two types of validation
are briefly discussed below:
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Allocating over several samples and testing for random
composition

Assume the mixed sample S is made up of a collection of
several empirical samples. The empirical samples may
cover some geographical area or temporal period. In order
to validate the k reference groups, simply allocate the
genotype samples to the k groups (G,, G,, G; ... G,) and
compile the number of specimens within each sample
which are allocated to each reference group, thus building
an r x ¢ contingency table where ris the number of
reference groups and c is the number of empirical samples.
Then test for random allocation to the reference groups
across empirical samples using a traditional chi-squared
(%) test (Sokal & Rohlf 1981). In an extensive simulation
experiment, this test has been shown by Ryman & Jorde
(2001) to combine an o, error keeping close to the intended
one and high power when compared to several other
approaches including Fisher’s exact test. Traditional
chi-squared (x?) testing may be easily performed within
widely used computer packages such as Excel. As is
customary, P values below 0.05 are taken to be an
indication that reference group composition is unlikely to
be random across empirical samples and therefore validates
the k groups. To illustrate this procedure, here is the allocation
composition of the Lake ciscoe samples (Fig. 1, and see
below under Study cases) to the two reference groups:

26 20 20 25 20 30 20 48 20 20 17

0 0 0 1 0 0 0 0 0 0 3

47 28 41 3 3 1 3 1 0 0 2

1 1 4 22 17 19 25 49 30 28 18

The P value obtained from chi-squared testing was < 10™.

When k > 2 and a significant P value is obtained,
chi-squared validation should also be performed on each
pair of reference groups to also test for pairwise distinctness.

Comparing phenotypic traits

Compute the average values of chosen phenotypic trait(s)
for reference groups formed by FLOCK and test their
differences for statistical significance. In most instances,
standard Student ¢-tests or F tests will be appropriate. Note
that contrasting traits are more likely to stand out and be
more easily identified after grouping of specimens.

Some examples — study cases

We now illustrate with two empirical examples the use of
FLOCK. The first example relates to a natural situation
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where the true history of divergence and admixture is
unknown, while the second case refers to the detection of
recent anthropogenic population admixture in the context
of population supplementation. In both cases, FLOCK is
used to obtain reference groups within an introgression
context and in the absence of all or part of the source
samples. The reference groups are subsequently used to
either map admixture geographically or to estimate the
stocking /nonstocking components at site and individual
levels. All runs reported in this article were performed in
Maple version 9.5 (MapleSoft 1981-2004) on an Intel(R),
2.66 GHz, 2.99 Go CPU.

Historical introgression between Lake ciscoes
(Coregonus artedi) glacial races

In the Holarctic, pleistocene glaciations forced southward
population shifts into refugial ice-free areas. As a result
of allopatric isolation in distinct refuges, species lineages
developed into genetically differentiated glacial races
(Hewitt 2000). These races later established their current
geographical distribution and intermixed at various
degrees contingent upon the timing and availability of
recolonization routes. In North America, proglacial lakes
formed at the margin of the receding Laurentian ice sheet
¢. 6000-8000 years ago and provided formidable postglacial
dispersion avenues for fish and other aquatic biota. There is
compelling evidence that freshwater fish races developed
in several refugia and that they dispersed and intermixed
during the recolonization process (reviewed in Bernatchez
& Wilson 1998).

As per many other fish species, analysis of mtDNA
polymorphism in the Lake ciscoe, Coregonus artedi, suggested
the existence of an Atlantic and a Mississippian glacial

0.0

races. However, races co-occurred throughout most of the
range, and there were no sites where the presence of a
single race could undoubtedly be assumed (Turgeon &
Bernatchez 2001a). Likewise, microsatellite polymorphism
distribution suggested widespread introgression between
the Atlantic and Mississippian races, but the analyses were
hindered by the lack of “pure’ reference samples (Turgeon
& Bernatchez 2001b). Nevertheless, analyses relying on
bimodal allele size distributions at multiple loci provided
evidence for a continental-wide cline of admixture levels
decreasing from west to east, thus supporting the admix-
ture hypothesis. Importantly, several analyses suggested a
clinal break indicating that Lake Nipigon and Lake Supe-
rior, which are currently interconnected, were dominated
by fish of Mississippian and Atlantic origin, respectively
(Turgeon & Bernatchez 2001b, 2003).

The FLOCK procedure has been applied with k = 2 to the
same genetic data set, including all sampled specimens
from all lakes, and stable reference groups were obtained
after 15 iterations (see Fig. 1b). Total run-time was 15.2 s. A k
validation was performed based on the allocation number
distribution over samples. The resulting chi-squared P
value was < 107°. The allocation numbers (Fig. 1b) and the
per-lake average LLOD scores were then calculated (Fig. 2).
The resulting admixture mapping was in total agreement
with the previous analyses in revealing a decreasing
eastward contribution of one reference group, the Atlantic
glacial race, as well as a clear clinal break in the vicinity of
Lake Nipigon and Lake Superior. Besides its simplicity and
speed of execution, an important feature of FLOCK is that
the results relied on the whole data set rather than on a few
loci which happened to carry the right information. Had
these loci with bimodal allele size not been scored, the
investigators might have overlooked their clinal structure.
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Evidence of population supplementation in grayling
(Thymallus thymallus) of Lake Saimaa (Finland)

A common conservation or management strategy to assist
declining species is to supplement local populations with
captive-bred individuals. Most often, the parents of these
individuals are not from the local population, such that their
offspring can bring foreign genes into the supplemented
population. As such, the mere presence of foreign alleles
in a supplemented population, as well as the degree of
individual admixture, provide a way to assess the success
of the supplementation procedure.

In Finland, fish from a major hatchery on Lake Saimaa
came from the Puruvesi region of the lake. The Puruvesi
hatchery was used to supplement the Pielinen, Eteld-
Saimaa and Hoytidinen populations of Lake Saimaa since
1986. For two such sites (Pielinen and Eteld-Saimaa), historical
fish scale samples from the pre-supplementation period
were available as reference for the local population gene
pools. Moreover, a temporal series of samples from the
hatchery broodstock used to produce the supplemented
individuals was available. Using these reference samples,
Koskinen et al. (2002) performed allocation and exclusion
analyses to classify contemporary individuals from these
supplemented sites as representative of either indigeneous
or hatchery populations. They also estimated the individual
degree of admixture between contemporary (post-stocking)
indigenous fish and the hatchery broodstock by performing
Bayesian analyses using the Structure software. Results
indicated that local populations retained their genetic
distinctiveness and were not much introgressed with the
stocked fish. Nevertheless, in Pielinen, there was also
evidence that introgression was increasing with time.
However, results from Eteld-Saimaa were not conclusive
because of the very large confidence interval around
admixture level, even in pre-stocking historical samples.

We performed an analysis with FLOCK without using
the historical reference samples. Namely, we assumed that
neither the hatchery nor the Eteld-Saimaa and Pielinen his-
torical source samples were available. The procedure was
run independently with k =2 for each of the three local
stocking situations. In each case, the global sample S was a
combination of either site Eteld-Saimaa, site Pielinen or site
Hoytidinen specimens with local specimens from Puruvesi
(and not from the hatchery itself). For Pielinen, specimens
were divided according to the sampling dates of 1998 and
2001 and FLOCK was run independently for each date.

For each local stocking situation (Eteld-Saimaa + Puruvesi,
Pielinen + Puruvesi, Hoytidinen + Puruvesi), two genetic
groups were obtained by applying FLOCK: Ref_Puruvesi,
comprising most Puruvesi specimens, and Ref_LocalSite.
Note that these ‘reference’ groups should not be confused
with empirical, “pure’, reference samples which were not
considered in the analysis. The likelihood log differences

© 2009 Blackwell Publishing Ltd
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Fig. 3 Admixture analysis of European graylings in Lake Saimaa,
Finland, showing LLOD scores for specimens from Puruvesi
and specimens from local origin. (a) Puruvesi + Pielinen; (b)
Puruvesi + Eteld-Saimaa; (c) Puruvesi + Hoytidinen. LLOD scores
are shown for Puruvesi vs. local sources. Genotypes from
Koskinen et al. (2002). Note that the x-axis does not refer to
a measuring variable but only serves to spread out LLOD
distributions of individual genotypes and to separate blocks of
specimens on the basis of sample location/date.

(LLOD scores) between Ref Puruvesi and Ref_LocalSite
were subsequently calculated for each specimen. These
results are shown in Fig. 3 while Table 1 shows the alloca-
tion matrix for each of the three stocked sites. The most
likely introgressed specimens are those having LLOD values
within the main range of the Puruvesi LLOD values.
Within each of the Pielinen and Etelid-Saimaa situations, all
but a few of the Puruvesi specimens were allocated to a
single reference group (Ref. 2 in Table 1). On the other hand,
most of the local specimens were part of the other reference
group, Ref. 1, but some belonged to Ref. 2 (Table 1), as
expected within a stocking context. The LLOD map for
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Table 1 Number of European graylings assigned to and excluded from reference populations in Koskinen ef al. (2002) or allocated to

reference groups by the FLOCK method. See text for details

Koskinen et al. (2002)* FLOCK
Lake sector Source Local Hatchery Source Ref. 1 Ref. 2
Pielinen Local 1998 not reported not reported Local 1998 70 7
Local 2001 58 3 Local 2001 69 10
Hatcheryt 0 76 Puruvesit 1 30
Eteld-Saimaa Local 13 4 Local 23 4
Hatchery 0 49 Puruvesit 1 30
Hoytidginen Local not analysed not reported Local 36 24
Hatchery Puruvesit 9 22

*In Koskinen et al. (2002), specimens had to be assigned to contemporary samples of the local population and excluded from reference
hatchery samples. Totals differ from the FLOCK results because many specimens did not comply with the requirements of being assigned
and excluded. tKoskinen et al. (2002) used a temporal series of the Puruvesi hatchery samples as reference while FLOCK used wild local

samples from near the hatchery.

Pielinen shows an evolution from a small number of 1998
Pielinen individuals that are very much of type Puruvesi
towards a larger number of 2001 specimens that are clearly
introgressed but with lower LLOD scores (Fig. 3a). This
result is consistent with the earlier findings using source
samples and also with the evolution of introgression under
this supplementation regime, that is a progressive dilution
of the genetic contribution from the Puruvesi stock. In
Eteld-Saimaa (Fig. 3b), four local fish were allocated to the
Puruvesi reference group, suggesting introgression with
Puruvesi genes, while all others were allocated to the other
reference group (Table 1, Fig. 3b). These results paralleled
those of Koskinen et al. (2002) but offer a more global por-
trait of introgression in Eteld-Saimaa. Indeed, these authors
had not been able to interpret admixture results because
of large confidence intervals around g-value estimates by
Structure, even when using the historical reference samples.
The results for Hoytidinen (Fig. 3c) were more tangled up,
the two reference groups attracting specimens from Puruvesi.
Therefore, it seems that either introgression was more com-
plete in Hoytidinen or that the Hoytidinen and Puruvesi
sites were genetically much similar from the start. However,
the introgression map for the Hoytidinen specimens could
still be used to choose the purest candidates for supple-
mentation purposes.

The impact of total sample size N on execution time
and on precision

In order to explore the connection between N, the size of
S, and run time with FLOCK, the ciscoes full data set
(N = 613) as well as reduced sets of N = 30, 40, 50, 75, 150,
300 were run until stability was reached. Note that each
reduced sample has been selected at random. Run times
and number of iterations were recorded for each trial

(Figure S1, Supporting information). Also, admixture
mappings were drawn for sample sizes N = 50, 75, 150, 300
and 613 (Fig. 4a).

As expected, the run times were a (quasi) linear function
of sample size. This comes largely as a result of re-allocation
duration being directly proportional to the number of re-
allocated individuals. The connection between sample size
and the number of iterations to reach stability was not clear
but this seemed not to substantially modify the linearity of
the sample size vs. execution time relationship. As for the
admixture mappings, they were quite similar across the
different values of N and they basically conveyed the same
clinal introgression structure for Lake ciscoes. The relation-
ship between number of reference groups (k) and execution
time has not been explored since its linearity appears trivial
given that re-allocation with k groups consists for the most
part in calculating the likelihood of each genotype within
each of the k subgroups.

The impact of genetic information contents

Any type of genetic marker, whether dominant or codominant,
can be used to run the FLOCK procedure. The relationships
between parameters defining the level of genetic information
such as number of loci, number of alleles per locus, allelic
frequency distribution and the efficiency of the FLOCK
procedure are clearly the same as those pertaining to simple
allocation. An extensive description of those relationships
can be found in Bernatchez & Duchesne (2000).

With admixture mappings, lowering genetic information
level will tend to reduce the definition of the mapping. This,
of course, might cause important patterns to be flattened
out to a point where they can be no longer distinguished.

Wishing to gain some insight into the consequences of
reducing genetic information, we ran FLOCK with several

© 2009 Blackwell Publishing Ltd
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Fig. 4 Mean LLOD scores in samples of Lake ciscoes ordered from
west to east for (a) randomly chosen ciscoe samples of sizes N = 50,
75,150, 300 and 613. The lowest curve corresponds to N = 50; and
(b) randomly chosen sets of loci (3, 4, 5, 6 and full data set of 7 loci)
and randomly chosen 100 specimens as starting mixed sample for
each set of loci (underlined number near curves indicate the
number of loci).

randomly chosen sets of loci taken from the original ciscoes
data set. Numbers of loci were 3, 4, 5, 6 and 7 (full data set)
and 100 specimens were randomly chosen as a starting
mixed sample S for each set of loci. Admixture mappings
were computed and plotted for each set (Fig. 4b).
Although the mappings with the lower numbers of loci
were, as predicted, flatter than the ones with more loci,
they still retained the basic west-east introgression axis
and even the previously documented Lake Nipigon-Lake
Superior clinal break. Given that the poorest set contained
only three loci and therefore very limited allocation power,
this may look surprising at first sight. However, contrary to
individual allocation, introgression mapping rests on
the totality of specimens and, in addition, integrates the
relationship between genotype samples and their location
thus adding a considerable amount of information. Finally,
global patterns may remain discernible even after several
substantial local changes resulting from a loss of resolution.

© 2009 Blackwell Publishing Ltd
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Simulations

To better assess the power of the FLOCK algorithm given
various levels of available genetic information and various
degrees of admixture, a number of simulations were run.
Also, performance comparisons were made with the Structure
software based on an identical set of parameter values.
Structure was chosen because its use is currently very
widespread. Indeed, it has become a standard tool to
analyse genetic structure and most investigators would
use it to try to unravel the structure of admixed samples.
Moreover, Structure explicitly proposes an admixture
parameter with two possible values: Default and No
Admixture.

Admixture building devise

First, two sets of allelic frequencies were randomly generated
for 14 loci. The number of alleles for each locus were,
respectively, 12,7,7,7,16, 10, 10, 7, 14, 10, 10, 7, 12, 14. This
set of number of alleles spans a frequently encountered range
found in genetic structure studies based on microsatellites.
A table of allelic frequencies for each locus and each set is
provided in Table S1 (Supporting information). Then two
(pure) groups, say A and B, of 500 artificial genotypes were
randomly generated, each from a different set of allelic
frequencies. These genotypes made up generation 0
(G0) and, of course, there were no admixed genotypes at
this stage.

To build G1, 50 genotypes were chosen at random from
each of A and B and put together to make up a ‘hybrid
zone’ of 100 specimens (hereafter called H specimens).
Then the 450 pure specimens of the A zone were made to
breed together in the following way: two genotypes were
chosen at random and each provided one randomly chosen
allele for each locus to produce one offspring. This was
carried out 450 times to obtain 450 pure A descendants. The
same breeding scheme was used with the 450 specimens of
the pure B zone and with the 100 specimens of the hybrid
zone (H). Therefore, the hybrid zone of G1 comprised an
expected proportion of 0.5 F, hybrids, 0.25 pure A and
0.25 pure B genotypes and the expected proportion of
hybridized specimens among all 1000 G1 specimens was
0.5 x100/1000 = 0.05.

To produce G2, 50 pure A and 50 pure B specimens (from
G1) were added to the hybrid zone of G1 and then breeding
took place within each zone (400 pure A, 400 pure B and
200 H specimens). The resulting hybrid zone of G2 con-
tained F;, backcrosses, pure A and pure B specimens.

G3 and all subsequent generations were produced based
on the previous generation following the same recurrent
procedure. The expected proportion of hybridized genotypes
as a function of generation index is shown in Fig. S2 (Sup-
porting information) and calculation details are provided
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as Appendix S1 and Table S2 (Supporting information).
Note that both the proportion of hybrid individuals
and their average level of admixture increase with each
generation. In the long run, almost all specimens will show
equal A and B ancestries. In fact, admixture within these
simulations increases much more quickly, generation
wise, than it does in the vast majority of natural settings.
However, the admixture dynamics remains essentially the
same although, for obvious practical reasons, it is greatly
accelerated.

G10 marks a turning point in the admixture building
process since it is bred in a panmictic mode from 1000
genotypes, all in the H zone, and among which stand very
few pure A or B genotypes. Thus from G10 on, the smearing
process gives way to a homogenization leading to a
gradual loss of genotypes with skewed ancestry or, in other
words, tending towards 50-50 ancestry. Consequently, the
ancestral differentiation signal should be expected to decay
quickly after G9 thereby severely limiting the power of
tools designed to recover some of the pre-admixture struc-
ture. This is why the performance comparisons between
FLOCK and Structure bear on generations 9-10-11. Note
that G9, the last fully smeared generation, still comprises
about 11% of pure A or B genotypes while G10 and G11
hold only about 0.5% and 0% of purebreds, respectively.
As long as some purebreds are available, the ancestral
signal is kept intact and will generally be easily captured.
Therefore, it is the absence or quasi-absence of purebreds
that represents the real challenge for admixture mapping
algorithms.

Performance assessment

Three sequences of 11 generations (1-11) were produced,
one with a choice of six loci, one with 10 loci and one with
the full set of 14 loci, each sequence generated anew from
the same GO0. At GO, the level of differentiation between A
and B, as measured by Fg;, was 0.070 (Belkhir et al. 2004).
FLOCK was run assuming k = 2 on all 12 generations (0-11)
of the six loci sequence and on generations 9-10-11 of the 10
and 14 loci sequences. Structure was run assuming k = 2 on
generations 9-10-11 of each of the three sequences with
50 000 burn-in period and 100 000 reps’. All other para-
meters and priors were set to default. All MCMC chains
converged properly. As for FLOCK, no values other than k
are requested.

Performance of the FLOCK algorithm was assessed by
allocating the pure genotypes of GO to the two reference
sets produced from 30 re-allocation matrices. The output
variable was the sum of the largest number of the original
GO genotypes allocated to each reference set divided by the
total number of genotypes allocated (1000). This proportion,
say P, is a simple, straightforward, way of measuring to
what extent the differentiation between FLOCK reference

sets followed the ancestral, pre-admixture, differentiation.
The same output variable was used to assess the perform-
ance of the Structure program. However, since Structure
does not provide separate reference groups explicitly, the
latter were built from the g-values simply by assigning the
genotypes with g < 0.5 to one group and those with g > 0.5
to the alternate group. This dividing line is very similar to
the one used by FLOCK since it sends each genotype to a
reference group as soon as it shows a higher likelihood in
that group (LLOD threshold = 0).

Results

First, it must be noted that classic, a la Paetkau, re-allocation
based on known source samples of the pure genotypes of
GO was perfectly accurate even with six loci. Therefore, the
pre-admixture A vs. B dividing line is initially crisp but
becomes fuzzier and fuzzier as the admixture process goes
on. The FLOCK results for the complete six loci generation
sequence are shown in Fig. S3 (Supporting information)
where P, is mapped as a function of the generation index.
P, scores for generations 0, 1, 2 ... 8 are all above 0.97. P,
decreases slightly to 0.941 with G9 despite a low proportion
(5%) of each type of pure genotypes. As expected from the
previous analysis of the admixture process, the P, score
undergoes a significant drop at G10 (0.870) and a dramatic
one at G11 (0.644).

Hereafter, only the Structure results with admixture
parameter set to its Default value, as opposed to No Admixture,
will be discussed since only small and nonsystematic
performance differences between the two prior admixture
settings were observed. Moreover, one would expect
most potential users to choose the Default value within an
admixture analysis context. The results for the G9-10-11
sequences (see Fig. 5) show that both FLOCK and Structure
performed very well at G9 even with 6 loci and despite
extensive admixture (89%). At G10, the FLOCK perform-
ance as measured by P, did not improve with number of
loci and remained stable within the 0.86-0.88 range. By
contrast, the P, score for Structure jumped from 0.648 at
six loci to reach the same performance level as FLOCK
when provided with 10 and 14 loci. At G11, after two
episodes of genotype homogenization, FLOCK scored 0.644
with six loci but then improved slightly to reach 0.690 with
14 loci. Structure also improved with 14 loci but always
scored lower on P, than FLOCK although the differences
remained within the 0-0.100 range.

Average execution run times were 12 min for Structure
and 4 min for FLOCK. However, FLOCK is currently coded
in the programming language Maple and so runs much
slower than it would if coded in a compiled programming
language, for example, Java, C, C++ or Fortran. Seeking to
estimate the execution time ratio between MAPLE and
C++, we ran a parental allocation with pAPA (written in

© 2009 Blackwell Publishing Ltd
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Fig. 5 P,,. as a function of generation index for generations 9, 10 and 11. P, scores for FLOCK and Structure are represented in black and

grey, respectively, (a) with six loci (b) with 10 loci (c) with 14 loci.

C++; Duchesne et al. 2002) and with an equivalent Maple
code. The Maple code took approximately 1200 times
longer to perform the same allocation task. Therefore a
rough estimate of the run time ratios between FLOCK and
Structure is 12/4 x 1200/1 = 3600/1 and so a conservative
prediction would be that FLOCK should run at least 1000
faster than Structure once coded in a compiled programming
language.

Interpretation

Dividing the G9 genotypes along pre-admixing lines turns
out to be an easy task for either algorithm. Apparently, this
is due to the original generation (G0) being clearly
differentiated even with six loci and also to the presence of
50 pure A and 50 pure B genotypes greatly helping both
algorithms to pick up a clear pre-mixing differentiation
signal. However, G10 with its expected number of three
purebreds of each type is a more difficult case and it looks
as if 0.88 were an upper bound for P,,.. However, this
bound was reached with a lesser number of loci (six) with
FLOCK than it did with Structure. By Gl11, the ancestral
signal is much weaker and it is doubtful that adding extra
loci would bring P, scores significantly above 0.70.
However, the performances of both FLOCK and Structure
did improve slightly with number of loci, with FLOCK
always doing a little better.

In practice, extremely admixed populations are considered
of a single component. Population structure analysis will
be most difficult with admixture levels standing in the
intermediate range, when the full smear of admixture is

© 2009 Blackwell Publishing Ltd

about to be lost. The performance differences between
FLOCK and Structure are most important when the ancestral
differentiation signal is of intermediate level.

In a nutshell, the simulations have shown that given a
sizeable number of A and B purebreds, recovering the
ancestral differentiation signal was equally easy for FLOCK
and Structure. However, FLOCK proved significantly
more powerful when pure genotypes were few or absent.
Moreover, the potential for fast processing definitely stood
on the FLOCK side.

Summary

Situations where two or more genetically distinct genetic
entities have undergone introgression over time, such that
pure samples may no longer be available, are frequently
encountered. FLOCK is an algorithm especially designed
to provide spatial and/or temporal admixture maps in the
absence of one or several source samples. First, it builds
k reference samples from the totality of sampled specimens.
The reference samples are obtained by iterative re-allocation
starting with a random division of all specimens into k
subsamples. The reference samples are subsequently used to
compute and map log likelihood scores onto geographical
or chronological domains. Reference samples have to be
validated through statistical testing involving information
other than the mixed sample of genotypes (S).

FLOCK proved an efficient, rapid method. FLOCK
noticeably refined some published results without using
pure samples. Moreover, the number of loci needed to
reveal general admixture patterns turned out to be surprising
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low. Simulations showed FLOCK to be substantially more
powerful than Structure in the absence of pure genotypes
and that it had greater potential for fast processing. FLOCK
is currently programmed in Maple. Programming of FLOCK
in a compiled programming language such as Visual Basic
or C++ will soon be undertaken to provide a friendlier
interface and much shorter run times.
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Supporting information

Additional supporting information may be found in the online
version of this article:

Fig. S1 (a) Run time and (b) number of iterations to reach stability as
a function of N, the size of a randomly mixed sample of Lake ciscoes.

Fig. S2 Given the admixture building device (see text), the prob-
ability that a specimen be hybridized as a function of time as
expressed by generation index.
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Fig. S3 P, measures the similarity between the line dividing the
original A and B groups at generation 0 and the line dividing the
reference groups at later generations. Here it is represented as a
function of generation index and the reference groups, based on
six loci, are those obtained from FLOCK.

Table S1 Allele frequency distributions of artificial genotypes
forming groups A and B used in simulations

Table S2 Spreadsheet showing an implementation of the calcula-
tion of the expected proportion (probability) of hybridized genotypes
as a function of generation index. The results of those calculations
are represented in Fig. S2.

Appendix S1 Detailed explanation of the calculation of the
expected proportion of hybridized genotypes as a function of gen-
eration index

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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Appendix
Re-allocation number matrices

The sequence of re-allocation numbers obtained from
iterating re-allocations is best represented in matrix form.
For instance, given initial subsamples X' and Y, the first
column of the result matrix from the first re-allocation
would correspond to the number of X' specimens being
re-allocated to X' (first row) and to the number of X'
specimens being re-allocated to Y' (second row). Similarly,
the first and second rows of the second column would refer
to numbers of Y' specimens re-allocated to X' and Y',
respectively.

The next X' subsample, X2, would comprise all specimens
re-allocated to X', whether originally from X' or Y'. In other
words, X2/Y? corresponds to all specimens counted in the
first/second row of the first re-allocation matrix. Re-allocation
number matrices can of course be of any dimension.

The re-allocation process is exemplified with the Lake
ciscoe example in Figure 1.

Number of re-allocations

How many times should the re-allocation process be
applied? Clearly, there is no fixed answer to this question.
Let us define state E'=X', Y, Z' ... = composition of the k
subsamples at time i. In some cases, the sequence of E' will

end up being a single state (a ‘fixed point’) looping as in E'
E'E' ... In other cases, instead of a single state looping,
several distinct states will repeat themselves as, for
example, in E' FE*E' FE* E' FE... The E' F E*string would
then be referred to as an ‘orbit’. Fixed points or orbits can
be detected by examining the re-allocation numbers
without actually identifying the members of the k
subsamples.

Whenever a fixed point E' is reached then obviously the
last state to be considered is E'.

If the procedure starts orbiting, then any state pertaining
to the orbit may be considered since differences between
orbit states will be insignificant.

Still in other cases, neither a fixed point nor an orbit can
be detected but the re-allocation number matrix will be vary-
ing only slightly over several past re-allocations. Then the
last state obtained should be the one retained.

We thereafter refer to the condition of having attained a
fixed point, an orbit or a (nearly) stable allocation number
matrix as ‘stability’.

Once stability has been reached and some state EF con-
sidered final, the corresponding k subsamples X", Y, ZF ...,
the diagonal specimens of the last re-allocation matrix,
should be taken as reference groups. In other words, the
reference groups comprise those specimens that have
remained in the same subsample during the last re-
allocation (the one leading to E").
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