Species Flock in the North American Great Lakes: Molecular Ecology of Lake Nipigon Ciscoes (Teleostei: Coregonidae: Coregonus)

Julie Turgeon; Arnaud Estoup; Louis Bernatchez

Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28199912%2953%3A6%3C1857%3ASFITNA%3E2.0.CO%3B2-C

Evolution is currently published by Society for the Study of Evolution.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ssevol.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.
The ecological theory of adaptive radiation proposes several mechanisms that can promote rapid phenotypic divergence within a single clade (Huxley 1942; Mayr 1963). In most of these mechanisms, divergent natural selection leads to morphological and physiological differentiation if populations are submitted to different selection regimes when they exploit alternative resources and environments. Opportunities or incentives to exploit new resources are associated with relaxed competition regimes offered by the colonization/availability of novel suitable habitats or the acquisition of a key evolutionary innovation that can both provide access to unexploited niches. When reproductive isolation evolves as a consequence of resource-based divergent natural selection and/or resource competition, the process can be regarded as ecological speciation (Schluter 1996a,b).

Recent studies on north temperate fish species indicated that new habitat availability following the last ice sheet retreat has promoted ecological speciation in postglacial lakes. Extensive ecophenotypic polymorphisms observed among the North American Great Lakes ciscoes suggest that this fish group has radiated through trophic adaptation and reproductive isolation. This study aims at relating the ecomorphological and genetic polymorphisms expressed by the Lake Nipigon ciscoes to evaluate the likelihood of an intralacustrine divergence driven by the exploitation of alternative resources. Morphological variation and trophic and spatial niches are characterized and contrasted among 203 individuals. Genetic variation at six microsatellite loci is also analyzed to appraise the extent of genetic differentiation among these morphotypes. Ecomorphological data confirm the existence of four distinct morphotypes displaying various levels of trophic and depth niche overlap and specialization. However, ecological and morphological variations were not coupled as expected, suggesting that trophic morphology is not always predictive of ecology. Although extensive genetic variability was observed, little genetic differentiation was found among morphotypes, with only one morph being slightly but significantly differentiated. Contrasting patterns of morphological, ecological, and genetic polymorphisms did not support the hypothesis of ecological speciation: the most ecologically different forms were morphologically most similar, while the only genetically differentiated morph was the least ecologically specialized. The low levels of genetic differentiation and the congruence between θ and φ estimates altogether suggest a recent (most likely postglacial) process of divergence and/or high gene flow among morphs A, C, and D, whereas higher φ estimates for comparison involving morph B suggest that this morph may be derived from another colonizing lineage exchanging little genes with the other morphs. Patterns of ecophenotypic and genetic diversity are also compatible with a more complex evolutionary history involving hybridization and introgression.

Key words.—Coregonus, genetic differentiation, microsatellites, morphology, species flock, trophic ecology.
sistent with recent postglacial divergences: unlike other cor-
egonids, genetic distances estimated from allozymes, mtDNA, and rDNA among GL ciscoes are generally very low (Bernatchez et al. 1991; Bodaly et al. 1991; Snyder et al. 1992; Sajdak and Phillips 1997; Reed et al. 1998). Finally, differentiation must have occurred within one or a few evolutionary clades because it is improbable that many species independently colonized the GL watershed during such a short period. Altogether, these characteristics suggest that the GL ciscoes constitute a species flock because they correspond to the criteria originally advanced by Greenwood (1984) for a species flocks denomination, that is, endemism, geographical circumscription, and monophyly.

However, GL cisco radiation appears to be different from those suspected in other North American, postglacial fish systems. Unlike most cases where divergence led to pairs of ecotypes (reviewed in Schluter 1996b), ciscoes have differentiated into multiple morphotypes, five of which are endemic to the GL and three are widespread (Scott and Crossman 1973). Whereas ecological divergence among fish species pairs is principally associated with the trophic niche axis (Robinson and Wilson 1994), reproductive allochrony, foraging, and spawning depth allopatry appear to be as important as trophic morphology in the radiation of ciscoes. Smith and Todd (1984) have proposed that the GL ciscoes form an incipient species flocks whereby one (or two) colonizing lineage(s) radiated through intralacustrine diversification driven by food and/or depth niche specialization. Nonexclusive alternatives to this evolutionary scenario include: (1) lineage plasticity, whereby phenotypic variation is the mere expression of a plastic and unstructured gene pool; and (2) colonization by genetically differentiated lineages (secondary contacts) followed by persistence or hybridization/introgres-

Lake Nipigon (Ontario, Canada, 49°45' N 88°30' W) is a large lake (4500 km²) located in the northwestern corner of the North American Great Lakes watershed (Fig. 1). In Au-

![Figure 1](https://example.com/figure1.png)

Figure 1. Location map of Lake Nipigon (Ontario, Canada) and sampling sectors (Caribou Islands and the Willows).

variation among Lake Nipigon ciscoes is then paralleled with patterns of ecomorphological variation.

Materials and Methods

Sampling of Biological Material

Lake Nipigon (Ontario, Canada, 49°45’N 88°30’W) is a large lake (4500 km²) located in the northwestern corner of the North American Great Lakes watershed (Fig. 1). In August 1997, 690 ciscoes (*Coregonus* ssp.) were captured in two lake sectors (Fig. 1). In each of these two sampling zones, fish were gillnetted at several sites in three depth strata (10–30 m, 31–60 m, and > 60 m). Four morphotypes were recognized on the basis of external morphological features currently used in the taxonomy of *Coregonus* species: body shape, pigmentation, eye size, mouth morphology and orien-

This study is the first to thoroughly evaluate the hypothesis of an adaptive radiation driven by the exploitation of alternative resources in North American ciscoes (Smith and Todd 1984). This hypothesis predicts that morphotypes should differ by ecologically relevant morphological traits related to different modes of resource exploitation and that partial or complete reproductive isolation should exist among these ecotypes. We first verify that phenotypic polymorphisms of Lake Nipigon ciscoes are expressed as distinct morphotypes and identify discriminant sets of morphological traits. Ecological polymorphisms along trophic and depth niche axes are then simultaneously documented to verify the putative functional link between morphology and ecology. The same fish are also typed at polymorphic microsatellite loci to assess the extent of genetic differentiation among ecotypes. Genetic analysis of the field-collected video images was performed using the Optimas software: xy coordinates were determined for 15 homologous landmarks to calculate 11 morphometric

Morphology

Analysis of the field-collected video images was performed using the Optimas software: xy coordinates were determined for 15 homologous landmarks to calculate 11 morphometric
variables (Fig. 2). Manual measurements with an electronic calliper provided values for three additional morphometrics (IOW: interorbital width; MDL: mandible length; MXW: maxillary width; Lindsey 1962). Two of the longest gill rakers (first and third most posterior rakers of the lower arch, GR1 and GR3, respectively), as well as the length of the lower and upper gill arches (LGL, UGL, respectively) were measured using the micrometer of a dissecting scope. Rakers were counted on the first lower (LGR) and upper (UGR) gill arches. The average of GR1 and GR3 determined mean gill-raker length (GRL), whereas intergill-raker space (IGS) was estimated as (LGL - 1)/(UGR - 1).

The univariate residual method was used to adjust each morphometric character for size heterogeneity among individuals (Thorpe 1976; Reist 1985; Flemming et al. 1994). For each character, raw values were logged and standardized; these were then used to establish the overall pooled sample regression line describing the relationship between this character and fork length (FKL). Residuals from the regression line were used as variables for all statistical analyses, along with two meristic variables (UGR, LGR) and maxillary angle with body axis (MXA). Residuals were also calculated for regression lines established separately for each morphotype; the results were essentially equivalent to those of the pooled sample analysis and are not presented in this paper.

Differences among a priori morphotypes were first assessed by univariate analyses of variance (ANOVA), adjusting significance level for simultaneous testing with the sequential Bonferroni procedures ($k_1 = 18$, Rice 1989). When a character showed among-morph differences, Scheffé's multiple comparisons were performed. Two multivariate methods were also used to identify patterns of covariation among morphological characters and to investigate the validity of the a priori classification. A principal component analysis (PCA) was first conducted to identify those characters contributing most to the overall variation. PCA also allowed to objectively examine patterns of individual clustering when there are no a priori group membership assignment. Discriminant analysis (DA) complemented the PCA in using assigned group membership to maximize the among-group relative to the within-group variation. DA also allowed to detect misclassified individuals and to determine the morph to which they most likely belong.

Depth and Food Niches

Morphotype abundances were compared among depth strata in each sampling zone with Fisher exact tests performed with the STRUC module of GENEPOP 3.1 (Raymond and Rousset 1995) using field data for 690 captured individuals. Morphotype depth distribution was also used to calculate Schoener's index of niche overlap, $I_{n,o} = \frac{1}{2} \sum p_i q_i$, where p_i and q_i are the proportions of morphotypes p and q in class (stratum) i (Schoener 1968, cited in Naesje 1991). Niche overlap within morph (between zones) and zone (among morphs) were compared using Mann-Whitney U-test.

The trophic niche of each morphotype was characterized by identifying and enumerating prey items contained in the stomach of each individual. Occurrences of common prey items were compared among morphs with χ^2 tests using Monte Carlo simulations (1000 iterations in the REAP package; McElroy et al. 1992). The diet of each fish was also described as the weight proportion of each food item after prey size/type correction into equivalent weight units (Culver et al. 1985; Tremblay and Magnan 1991; Sandlund et al. 1995; P. Magnan, unpubl. data). Average weight-adjusted diet composition of each morphotype was further adjusted for the occurrence of each prey type prior to being used to estimate and compare the extent of food niche overlap with Shoener’s index and Mann-Whitney U-tests (as above).

Genetic Variation

Microsatellite Markers

Five microsatellite markers cloned from ciscoes and one marker cloned from the congeneric Coregonus nasus (Patton et al. 1997) were used to characterize the genetic variability of the Lake Nipigon cisco assemblage (Table 1). Cisco markers were cloned from Lake Nipigon ciscoes following the detailed protocol of Estoup and Turgeon, which is available at the following address: http://www.inapg.inra.fr/dsa/microsat/microsat.htm. DNA was obtained from head muscle tissue using classical phenol extraction (Sambrook et al. 1989) or the rapid Chelex method (Estoup et al. 1996). Genotypes were visualized by migrating α-35S-labeled PCR fragments in 6% acrylamide gels following standard procedures (Sambrook et al. 1989). Allele sizes were determined by comparison to several internal standards, including the cloned allele for cisco loci and M13 phage sequence (Sambrook et al. 1989).

Data Analysis

The first step consisted of identifying panmictic units suitable for further analyses. Genotype distributions were compared to those expected under Hardy-Weinberg equilibrium (HWE) for different grouping schemes taking into account morphological and/or spatial factors (GENEPOP 3.1, option 1.1; exact test of $H_0 = \text{random union of gametes, with a rejection zone defined as } H_1 = \text{heterozygote deficit evaluated with a } U\text{-test}$). Grouping schemes considered were as follows:
TABLE 1. Cisco microsatellite markers: description and amplification conditions. All amplifications were performed in a total reaction volume of 12.5 μl with 25–50 ng of genomic DNA; 75 μM of CTP, GTP, and TTP; 5 μM ATP; 1.0–1.2 mM MgCl₂; 400 nM of each primer; 0.2 μCi ³²S-ATP; and 0.25 unit of Taq polymerase. PCR cycles were as follows: 1 × (3 min at 95°C); 5 × (45 sec at 95°C, 40 sec at Tm, 40 sec at 72°C); 23–25 × (30 sec at 95°C, 40 sec at Tm, 40 sec at 72°C); 1 × (2 min at 72°C).

<table>
<thead>
<tr>
<th>Microsatellites description</th>
<th>Primer sequence</th>
<th>Cloned allele (bp)</th>
<th>PCR conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Core sequence</td>
<td>Tm (°C)</td>
<td>Number of cycles</td>
</tr>
<tr>
<td>Cisco-90</td>
<td>(AC)₉₋₁₀ATAT(AC)₉</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>Cisco-126</td>
<td>(TC)₁₀₋₁₂N₄安定(GT)₈</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>Cisco-157</td>
<td>(GT)₁₇</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>Cisco-181</td>
<td>(GATA)₃₆</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>Cisco-200</td>
<td>(GT)₄₅(interrupted)</td>
<td>167</td>
<td>20</td>
</tr>
<tr>
<td>BWF2*</td>
<td>(CA)₂₅</td>
<td>167</td>
<td>20</td>
</tr>
</tbody>
</table>

All genotyped individuals as a single gene pool (one group, n = 203); individuals grouped by sampling zone (two groups: the Willows and Caribou Islands); individuals pooled by a priori morphological classification (four groups: morphs A, B, C, and D); and individuals pooled by morph and by sampling zone (eight groups). Significant global (multilocus) heterozygote deficits were interpreted as indicative of a sub-structure in the unit examined (Wahlund effect). Grouping of individuals on genetic characteristics alone was also assessed by examining the topology of a neighbor-joining tree using the shared-allele distance among individual genotypes (D₃₁, Chakraborty and Jin 1993) and by computing measures of genetic differentiation involving closely related populations (such as Hₑ; θ = 0 were determined by 2000 genotype permutations and were corrected for multiple comparisons (sequential Bonferroni procedure, cf above). Global θ- and δ-values were compared with a Wilcoxon matched pairs test performed with Statistica, version 5 (Statsoft 1997).

All mutation models except the infinite allele model (IAM) generate size homoplasy, and stepwise markers such as microsatellites are particularly prone to size homoplasy because all or a large proportions of newly arisen alleles are identical in size (but not by descent) to previously existing alleles. The extent of homoplasy is thus a consequence of the way new alleles are created, that is, of the mutation model. Compound and interrupted microsatellites are useful to detect size homoplasy (e.g., Estoup et al. 1995b; Garza et al. 1995), but because interrupted microsatellites show more deviation from the single-step mutation model (SMM) than perfect ones, they may actually be less homoplasious than perfect ones. Moreover, for a given mutation model, size homoplasy will be positively correlated to mutation rate and time since divergence between populations.

Indices of differentiation incorporating allele size differences (such as δ) indirectly assume SMM and it is still unclear how departure from this model and size homoplasy affect their calculation. Although it appears improbable that measures of genetic differentiation involving closely related and recently diverged populations such as in this study suffer from these potential biases (Angers and Bernatchez 1998; Estoup and Angers 1998), we have also performed the analyses of genetic differentiation separately on perfect (Cisco-157, Cisco-181, and BWF2) and imperfect (Cisco-90, Cisco-126, and Cisco-200) loci.

Finally, to ensure that our conclusions based on units defined by a priori morphological assignations were not biased by the imperfect morphological classification performed on the field, we conducted the genetic analyses using the a posteriori classification generated by the discriminant analysis as well as with a subset of individuals (n = 175) defining nonoverlapping clusters in the multivariate space.
MOLECULAR ECOLOGY OF LAKE NIPIGON CISCOES

RESULTS

Morphology

Statistical analyses revealed significant differences among the four a priori morphotypes, indicating that the number of gill rakers and a subset of head characteristics were useful to discriminate among these morphotypes. Size-adjusted morphological characters were statistically different among morphs for all but two morphometric variables (UJW and GRL, all other variables: \(P < 0.001 \) for \(\alpha = 0.05 \) and \(k_i = 16 \), and lower and upper number of gill rakers were also significantly different (\(P < 0.001 \)). Post hoc Scheffé pairwise comparisons suggest discriminant morphological characters among morphs: morph C has a longer snout, a longer head, and bigger eyes than all three other morphs, whereas morph D has a more vertical maxillary, a deeper body, and eyes located higher up on the head. With regard to gill-raker counts, morphs C and B are significantly different from each other as well as from A and D, which do not have significantly different numbers of rakers on either the upper or lower gill arches. The overall distribution of total gill-raker counts appears closer to a bimodal than a multimodal distribution (Fig. 3). The high variance in morph B total gill-raker counts is noteworthy (TGR: 31 to 51).

The first three components of the PCA accounted for 61% of the variation captured by the 18 morphological variables. Results of the PCA confirm that the most variable characters (highest loadings) are related to gill-raker number and spacing (PC1: LGR, UGR; PC3: IGS) and head characteristics (PC2: SNL, HDL, HDD, MXL, EYA). Discriminant analysis imposing the a priori classification confirmed the trends revealed by PCA. Individual clustering in the multivariate space defined by the first two discriminant roots shows good separation between morphs C and B on the basis of gill-raker counts, while A's and D's are totally overlapping with each other and partially with either C or B (Fig. 4). However, body depth, eye position, and maxillary orientation allowed to differentiate the latter two morphs on the second discriminant function (Fig. 4). The a posteriori classification matrix indicated that over 90% of morphs B, C, and D were correctly assigned to their group, whereas 77% of morph A were properly classified. Misclassified morph D were grouped with A; morph B and C were mostly assigned to morph A or D; and misclassified morph A grouped principally with morphs C or D. Geographical origin of individuals did not influence the proportion or type of misclassification. It is worth noting that individuals of morph B that stand out as outliers in the DA space are those possessing a high number of gill rakers (TGR > 44; Figs. 3, 4).

Depth and Trophic Niches

Comparisons of ciscoes depth distribution of each morph revealed the distinct and deeper niche of morph D (Table 2A, Fig. 5A). Relative abundance of the four morphs in each depth stratum were significantly different in both sampling zones (\(P < 0.0001 \)). Patterns of distribution somewhat differ between sampling zones, but trends are similar in each (Fig. 5A). Morphs A, B, and C were extremely rare in the deepest stratum, whereas morph D was more frequent in these deepest waters and totally absent above 50 m. Morphs A and B were more common in the shallows but also present in midwater layers. Depth niche overlap was higher when comparing a given morph between zones than a pair of morphs within a zone (mean \(I_{b.o} = 0.46 \) and 0.22, respectively; \(U = 6.0, P = 0.03 \)). In both zones, morphs A, B, and C shared a considerable portion of their depth niche, whereas morph D was strikingly differentially distributed (Table 2A, lowest niche overlap index).

Food items were identified and enumerated in 163 individuals proportionally distributed among morphs and sampling zones. The diet of Lake Nipigon ciscoes was dominated by five prey items, including plankton (Cladocera, Copepo-
Discriminant Root 1

FIG. 4. Distribution of Lake Nipigon cisco individuals of four morphotypes in the multivariate space defined by the first and second discriminant root functions describing variation in morphological traits. C, C, C, and C refer to x and y coordinates of centroid positions (▲) for morphs A, B, C, and D, respectively.

da), epibenthos (Mysidae, Diporeidae), and benthos (Chironomidae larvae) (Fig. 5B). A variety of benthic prey were observed (insect larvae Odonata and Ephemeroptera, Hirudinae, Gasteropoda, Bivalvia, and fish larvae); although individuals of each morphotype had foraged on benthos, each

Table 2. Schoener's index of (A) depth and (B) trophic niche overlap among Lake Nipigon cisco morphotypes (within zone: Caribou Island and the Willows above and below diagonal, respectively).

<table>
<thead>
<tr>
<th>Morphotype</th>
<th>Between zones</th>
<th>Within zone, among morphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>0.60</td>
<td>—</td>
</tr>
<tr>
<td>C</td>
<td>0.34</td>
<td>—</td>
</tr>
<tr>
<td>D</td>
<td>0.37</td>
<td>—</td>
</tr>
<tr>
<td>Morphotype</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>0.51</td>
<td>—</td>
</tr>
</tbody>
</table>

benthic prey type was found in less than 10 individuals and usually at a very low occurrence. Occurrences of Mysidae and pooled miscellaneous benthos were not different among morphs in either bay, whereas occurrences of the remaining prey types were significantly different in at least one sampling zone (P < 0.005). When expressed in equivalent weight units corrected for occurrence, further diet differentiation was revealed among morphs (Fig. 5B). Although all morphs fed on epibenthic mysids, the diet of morphs A and D were more specific in including a substantial proportion of plankton and Diporeidae, respectively (Table 2B, Fig. 5B). Both morphs B and C had diets dominated by Mysidae, but morph C also fed on plankton around Caribou Islands. Pairwise comparisons of niche overlap based on corrected mean diets indicated that the differentiation is stronger among morphs than between sampling zones (mean I, = 0.43 and 0.73, respectively), but these differences were not significant (U = 10.0, P = 0.09). Morph A occupied the most specific trophic niche (plankton), which was especially well differentiated from that of morph D.

Genetic Variation

Genetic polymorphism at six microsatellite loci covered a wide range of variability, with four to 32 alleles per locus (Table 3). Observed heterozygosity within units (morph by zone) was generally high, ranging from 0.43 (Cisco-90) to 1.0 (Cisco-200).
The individual-based, neighbor-joining tree constructed with microsatellite data was densely and deeply branched and there were no distinct clusters (phenogram not shown). When crossed with a priori morphological assignations, classification indices were always very low, with only individuals of morph B grouping better than expected by chance ($I_c = 0.14$, $P = 0.004$ for morph B vs. $I_c < 0.05$, $P > 0.15$ for A, C, and D).

Table 4 indicates that the ciscoes of Lake Nipigon did not form a single homogeneous gene pool (morph and zone pooled, $P = 0.002$). When a priori morphotype assignations were not considered (morph pooled), individuals from The Willows could constitute a panmictic unit (Table 4; $P = 0.106$), but the significant heterozygote deficit in Caribou Islands (Table 4; $P = 0.002$) is suggestive of a structure by morphotype at least in that last sampling zone. When grouped by morphotype only, morphs A, B, and C are in HWE. However, the test for heterozygote deficiency for morph D approached the adjusted probability level allowing rejection of H_0 ($k_1 = 4$), suggesting that spatial structuration may exist for that morph. Because both morphological and geographical factors cannot be clearly rejected as structuring factors in all cases, comparisons of individuals on the basis of both criteria were pertinent. This grouping scheme produced units that were all in HWE with no significant excess of homozygotes (Table 4, shaded area) and was retained for further analysis. In addition to defining panmictic units, this grouping scheme offered the possibility to track and evaluate the relative importance of each grouping criterion by using between zone comparisons for a given morph (zone effect) and among-morph comparisons within each zone (morph effect). Note that this grouping scheme was also supported by the ecological data, which suggest that differences in depth distribution and diet occur mainly among morphs but also between zones.

Results of the exact tests of genic differentiation are reported in Table 5A. Globally, morphs were highly differentiated in both zones ($P < 0.0001$). Differences in allele occurrences between zones were all nonsignificant, although the morph B and D comparisons were nearly significant. Within each zone, all pairwise comparisons involving morph B were significant or markedly near significance level. In the Willows, morphs A and D also had significantly different allelic arrays. When zones are pooled for each morph, morph B was significantly different from morph A, C, and D ($P < 0.004$) whereas all comparisons not involving morph B are nonsignificant ($P > 0.03$).

Hierarchical analyses indicated that most genetic variation was within morph × zone units. For both hierarchical schemes, a low but significant proportion of the allelic variance could be attributed to differences among morphotypes.
Table 3. Number of alleles (A), range of allele size (bp), observed heterozygosity (H_0; proportion of heterozygous individuals per sample), gene diversity (H_e, Nei 1987), and number of scored individuals (n) for each cisco morphotype and sampling zone of Lake Nipigon. W, the Willows; C, Caribou Islands.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Morphotype (sampling zone)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Mean n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>C</td>
<td>W</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Cisco-90</td>
<td></td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>102-110</td>
<td>102-110</td>
<td>102-110</td>
<td>102-114</td>
<td>102-110</td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.542</td>
<td>0.667</td>
<td>0.429</td>
<td>0.591</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.630</td>
<td>0.563</td>
<td>0.582</td>
<td>0.614</td>
<td>0.566</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>24</td>
<td>21</td>
<td>14</td>
<td>44</td>
<td>25</td>
</tr>
<tr>
<td>Cisco-126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.667</td>
<td>0.476</td>
<td>0.462</td>
<td>0.535</td>
<td>0.480</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.546</td>
<td>0.511</td>
<td>0.568</td>
<td>0.578</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>24</td>
<td>21</td>
<td>13</td>
<td>43</td>
<td>25</td>
</tr>
<tr>
<td>Cisco-157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>133-161</td>
<td>121-163</td>
<td>145-159</td>
<td>141-161</td>
<td>146-161</td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.652</td>
<td>0.810</td>
<td>0.714</td>
<td>0.762</td>
<td>0.760</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.765</td>
<td>0.860</td>
<td>0.789</td>
<td>0.839</td>
<td>0.825</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>23</td>
<td>21</td>
<td>14</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>Cisco-181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>176-288</td>
<td>168-292</td>
<td>172-236</td>
<td>180-304</td>
<td>180-280</td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.875</td>
<td>0.900</td>
<td>0.923</td>
<td>0.927</td>
<td>0.920</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.946</td>
<td>0.968</td>
<td>0.945</td>
<td>0.941</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>24</td>
<td>20</td>
<td>13</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>Cisco-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.955</td>
<td>0.900</td>
<td>0.909</td>
<td>0.950</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.888</td>
<td>0.953</td>
<td>0.925</td>
<td>0.932</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>22</td>
<td>20</td>
<td>11</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>BWF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>153-159</td>
<td>147-159</td>
<td>149-163</td>
<td>151-161</td>
<td>153-157</td>
</tr>
<tr>
<td></td>
<td>H_0</td>
<td>0.542</td>
<td>0.714</td>
<td>0.571</td>
<td>0.545</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>H_e</td>
<td>0.765</td>
<td>0.860</td>
<td>0.789</td>
<td>0.839</td>
<td>0.825</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>24</td>
<td>21</td>
<td>14</td>
<td>44</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Mean A</td>
<td>8.7</td>
<td>10.2</td>
<td>7.3</td>
<td>11.2</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>Mean H_0</td>
<td>0.705</td>
<td>0.744</td>
<td>0.668</td>
<td>0.718</td>
<td>0.740</td>
</tr>
<tr>
<td></td>
<td>Mean H_e</td>
<td>0.757</td>
<td>0.786</td>
<td>0.766</td>
<td>0.791</td>
<td>0.759</td>
</tr>
<tr>
<td></td>
<td>Mean n</td>
<td>23.5</td>
<td>20.7</td>
<td>13.2</td>
<td>42.3</td>
<td>24.5</td>
</tr>
</tbody>
</table>

(Table 6; θ = 0.016, P = 0.007 and θ = 0.013, P = 0.0005 for morph and zone as upper level, respectively), whereas variation between zones was not significant (Table 6: θ = 0, P = 0.623 and θ = 0.002, P = 0.443 for morph and zone as upper level, respectively). When the nonsignificant zone effect was removed (pooled zones for each morph), genetic variation among morphotypes remained significant (θ = 0.016, P < 0.0001). Pairwise θ indicated that most of the global differentiation can be attributed to morph B (Table 5B). Regardless of whether zone is considered as a grouping criterion, all significant θ-values concerned comparisons involving morph B; θ-values involving morph B are small (range: 0.011–0.029), but are nevertheless larger than all others by nearly one order of magnitude (range: 0–0.004). When individuals of morph B were removed from the analysis, there was no significant differentiation among morphs or zones nor significant pairwise θs. Global analysis taking into account allele size differences (φ) also showed that genetic variation was significant among morphs only (Table 6; φ = 0.018, P = 0.013). However, none of the pairwise φ-values were significant (results not shown), a result that may be explained by the higher variance of estimators considering allele size differences (Slatkin 1995, Estoup and Angers 1998). Global φ-values were slightly larger than global θ values (Wilcoxon matched pairs test, P = 0.046) when all morphs are considered, but not so when morph B was excluded from the comparison (P = 0.225).

Tests conducted separately with perfect and interrupted
TABLE 4. Identification of panmictic units among Lake Nipigon ciscoes. Morph × zone units show no significant heterozygote deficit ($H_0 = HWE$ and $H_1 =$ heterozygote deficit). Asterisks indicate significant sequential Bonferroni-adjusted P-value.

<table>
<thead>
<tr>
<th>Morph</th>
<th>Pooled</th>
<th>The Willows</th>
<th>Caribou Islands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled</td>
<td>0.002*</td>
<td>0.106*</td>
<td>0.002**</td>
</tr>
<tr>
<td>A</td>
<td>0.154b</td>
<td>0.103c</td>
<td>0.077c</td>
</tr>
<tr>
<td>B</td>
<td>0.282b</td>
<td>0.347c</td>
<td>0.489e</td>
</tr>
<tr>
<td>C</td>
<td>0.302b</td>
<td>0.378c</td>
<td>0.335e</td>
</tr>
<tr>
<td>D</td>
<td>0.032b</td>
<td>0.394c</td>
<td>0.253c</td>
</tr>
</tbody>
</table>

Bonferroni corrections:

\[k_1 = 2, P = 0.025. \]
\[k_2 = 4, P = 0.0125. \]
\[k_3 = 8, P = 0.00625. \]

TABLE 5. Genetic differentiation among Lake Nipigon ciscoes between and within sampling zone (Caribou Islands and the Willows above and below diagonal, respectively). (A) Pairwise multilocus θ. Asterisks indicate significant sequential Bonferroni-adjusted P-values from Fisher exact tests. (B) Pairwise multilocus ϕ. Asterisks indicate significant sequential Bonferroni-adjusted P-values.

<table>
<thead>
<tr>
<th>Morph</th>
<th>Between zonesa</th>
<th>Within zone, among morphsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[k_1 = 4, P = 0.0125. \]
\[k_2 = 6, P = 0.008. \]

TABLE 6. Hierarchical analysis of genetic variance among Lake Nipigon ciscoes. θ considers allele frequency variation and ϕ considers both allele frequency and size variation. (A) Morphology as upper level. (B) Sampling zone as upper level.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>θ</th>
<th>P</th>
<th>ϕ</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among morphs</td>
<td>0.016</td>
<td>0.007</td>
<td>0.018</td>
<td>0.013</td>
</tr>
<tr>
<td>Between zones,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>within morph</td>
<td>0</td>
<td>0.623</td>
<td>0</td>
<td>0.599</td>
</tr>
<tr>
<td>Within units</td>
<td>0.014</td>
<td><0.0001</td>
<td>0.014</td>
<td>0.035</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>θ</th>
<th>P</th>
<th>ϕ</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among morphs,</td>
<td>0.002</td>
<td>0.412</td>
<td>0</td>
<td>0.443</td>
</tr>
<tr>
<td>within zone</td>
<td>0.013</td>
<td>0.0005</td>
<td>0.010</td>
<td>0.014</td>
</tr>
<tr>
<td>Within units</td>
<td>0.011</td>
<td><0.0001</td>
<td>0.013</td>
<td>0.048</td>
</tr>
</tbody>
</table>

DISCUSSION

Ecomorphology

This study aimed to document the existence of different morphological types of ciscoes in Lake Nipigon and to verify the link between their morphology and ecology. Our data suggested that ecological differences parallel morphological distinctiveness. However, it revealed that gill-raker number alone may be misleading to predict cisco trophic ecology and that habitat must also be taken into consideration.

Global analysis of morphological characters supported the recognition of four cisco morphotypes in Lake Nipigon. On the basis of morphological characters, morphs A, B, C, and D can be equated to the description of Koelz (1927) and Scott and Crossman (1973) for Coregonus artedi, C. zenethicus, C. nigrrippinis, and C. hoyi of Lake Nipigon, respectively. Atypical individuals of morphotype B may represent specimens of C. nipigon, although their gill raker counts were not as high as in the original description (TGR seldom less than 54; Koelz 1927). However, the poor genetic differentiation among these morphotypes does not support specific denominations, and letter code designations are retained hereafter.

As documented in other phenotypically polymorphic fish assemblages, the number of gill raters was of the utmost importance for discrimination. It allowed us to clearly distinguish morphs B and C, but morphs D and A were characterized by similar number of gill raters. Unexpectedly, morphs with most similar trophic morphology occupied the most distinct food niches (morphs A and D), indicating that it is not always possible to infer feeding habits from a given morphology. In many other fish species pairs, gill-raker traits have proven to be associated with specific trophic niches: small planktivorous prey are more easily captured by numerous long raters, whereas larger benthic prey are amenable with fewer short and distant raters (e.g., Larson 1976; Bodaly 1979; Bentzen and McPhail 1984; Malmquist et al. 1992). Our results confirmed that small planktonic prey are found almost exclusively in the diet of forms with numerous gill raters (A and C), but also underscored the fact that these forms (e.g., morph D) are not necessarily foraging on small prey. Pelagic forms with numerous gill raters are known to also forage on benthos in other sympatric species pairs (Larson 1976; Bodaly 1979; Malmquist 1992). Similar lack of association between gill-raker number and prey size has been documented for other coregonids (Sandlund et al. 1987), and cases are known of morphotypes with similar numbers of gill raters that are segregated by food and depth (Hindar and Jonsson 1982). Numerous gill raters may simply allow a wider range of potential prey by permitting retention of prey of any size, whereas few distantly spaced raters may exclude smaller prey. In any case, caution should be taken to avoid inferences on foraging habits based solely on putatively determinative morphological features such as gill raters. Differences in gill-raker counts between sympatric forms of ciscoes have been documented in several interior lakes in Canada (Clarke 1973; Hénault and Fortin 1989), but without proper.
verification of the actual diet of these forms, care should be
taken to avoid equating occurrence of sympatric morphotypes
with that of trophic ecotypes. More importantly, these cases
should not be readily used as supportive evidence for im-
portant evolutionary processes such as character displace-
ment (e.g., Schluter and McPhail 1993). Lack of correspon-
dence between morphology and trophic ecology warns
against generalized inference because the latter may reflect
developmental correlations and/or ancestry as much as ecol-
y. Crossing information on food and depth niches also con-
firmed the importance of vertical habitat segregation in cis-
coes. As for morphs A and D in Lake Nipigon, contrasted
depth distribution was one of the clearest discriminating cri-
teria among ciscoes of the other Great Lakes, where it ap-
parently constituted a factor of reproductive isolation (re-
productive allopatry, Smith and Todd 1984). Maximum lake
depth was also the only environmental variable correlated
with the occurrence of multiple cisco forms in the “C. artedi
complex” of interior lakes in Canada (Clarke 1973). Deep
waters offer the ecological opportunity of a competition-free
habitat that has never been conquered by any other corego-
nids, and these additional epibenthic niches may have con-
stituted avenues for intralacustrine divergence at time of col-
onization. Speciation involving ecological differentiation or
isolation-by-distance seems to be particularly common in
deep lacustrine environments (Yampolski et al. 1994; Vainolä
1995; Martens 1997). The physiological ability of ciscoes to
exploit the very deep sections of large lakes may be a key
factor in explaining why multiple ciscoes forms exist, while
most other fish species have one or two ecotypes. However,
this hypothesis remains to be evaluated.

Genetic Variation

Although characterized by high levels of polymorphism,
microsatellite loci did not detect distinct gene pools corre-
sponding to the four morphotypes identified in Lake Nipigon.
However, the genotypic composition of all sampled individ-
uals allowed us to reject the hypothesis of a single gene pool
in Lake Nipigon and indicated that spatial and ecomorphol-
ogical factors must be taken into account. The greater im-
portance of ecomorphological over spatial factors was sup-
ported by the fact that genetic variation among morphs was
significant, whereas that between zones was not (Table 6).
This differentiation persisted when morphotypes (defined by
a priori, a posteriori, or forming nonoverlapping multivariate
clusters) from different zones were pooled, indicating that
differentiation among morphs was not an artefact of small
sample sizes or morphological assignation criterion.

However, the observed level of differentiation was low,
and only morph B could be clearly identified as genetically
distinct. The low levels of differentiation among Lake Nip-
igon cisco morphotypes may be attributed to a combination
of molecular, biological, and historical factors. Differentia-
tion indices are expected to be lower with hypervariable loci
such as microsatellites relative to those obtained with less
polymorphic markers such as enzymatic loci (Jin and Chak-
raboty 1995; Slatkin 1995; Rousset 1996; Estoup and Angers
1998; Estoup et al. 1998). However, microsatellites have suc-
cessfully been used to detect a wide range of differentiation
levels, revealing strong genetic differentiation at both local
(e.g., Angers and Bernatchez 1998; Estoup et al. 1998) and
large (e.g., Paetkau et al. 1995; Brunner et al. 1998) geo-
ographical scales, as well as contrasted levels of differentiation
at the intraspecific level (Estoup et al. 1995a; Tessier et al.
1997; Goodman 1998). More importantly, significant but low
levels of differentiation comparable to those in this study
have also been documented in other systems analyzed with
microsatellite markers (Allen et al. 1995; García de León et
al. 1997; van Oppen et al. 1997). In the case of the Lake
Malawi mbuna cichlids, low differentiation values charac-
terized color morphs that were effectively reproductively iso-
lated, as indicated by positive assortative mating (Van Oppen

The small values of differentiation indices among Lake
Nipigon cisco morphotypes are likely to reflect a very recent
process of divergence and/or substantial gene flow among
morphs. Divergence postdating the last glacial retreat
(10,000–15,000 years ago) should be sufficiently recent to
yield congruent estimation between θ and φ, whereas higher
φ-values are expected for more ancient divergences with low
gene flow (Slatkin 1995; Estoup et al. 1998; Goodman 1998).
Such comparisons among populations of postglacial fishes
indeed reveal divergence dating from distinct periods (Ber-
natchez et al. 1998; Estoup and Angers 1998; Estoup et al.
1998; Tessier and Bernatchez, unpubl. ms.). In Lake Nipigon,
θ- and φ-values were similarly low when morph B was ex-
cluded from the comparison of θ and φ, indicating that few
mutations have shaped differences among morph A, C, and
D due to a very recent divergence time with any level of
gene flow or to an older divergence with high gene flow. The
slightly higher values of φ when morph B was included in
this θ- vs. φ-comparison suggest that this morph may be
derived from a relatively more divergent lineage that sub-
sequently exchanged genes with morphs A, C, and D at a
lower rate.

Alternatively, but not exclusively, it is possible that de-
tection of little differentiation is due to substantial (current
or past) gene flow preventing rapid genetic differentiation
among morphs. Contrary to several species where sympatric
ecotypes are genetically distinct (Foote et al. 1989; Vespoor
and Cole 1989; McPhail 1991; Hindar and Jonsson 1993),
ciscoes do not exhibit assortative mating behavior (court-
ships, nest building, and defense), and their broadcast spawn-
ing may retard the development of reproductive isolation
(Dominey 1984).

Evolutionary History

The ecological theory of adaptive radiation predicts that
phenotypically differentiating taxa should be distinguished
by characters associated with resource exploitation and that
partial or complete reproductive isolation should exist among
ecotypes. In that context, Smith and Todd (1984) envisioned
that intralacustrine ecological divergence within two colo-
izing lineages of ciscoes explained the extensive ecophen-
totypic diversity of the GL cisco fauna. This evolutionary
scenario was only partly supported by the present study. As
expected, morphotypes were identified and their trophic and
depth niches were contrasted at various levels. However, there was no evidence of strong reproductive isolation among most of these morphotypes. Although the lack of genetic differentiation does not formally exclude current reproductive isolation, most other fish species pairs where there are behavioral indications of reproductive isolation have generated significant values of genetic differentiation statistics (Foote et al. 1989; Vespoor and Cole 1989; McPhail 1991; Hindar and Jonsson 1993). Extensive morphological and/or ecological variation among morphs A, C, and D can thus be regarded as plasticity within a single gene pool, although a very recent ecological divergence among morphs A, C, and D remains plausible because morphological differentiation coincides with contrasting diets and/or depth preferences. The low but significant genetic differentiation of morph B cannot readily be attributed to current ecological divergence because this morph did not show strong trophic or depth niche specialization. However, the global θ vs. ϕ comparison including morph B is suggestive of a historical differentiation and could give credence to the hypothesis of Smith and Todd (1984), who proposed that the two lineages of ciscoes having colonized the Great Lakes basin correspond to $C. zeni\text{thicus}$ (morph B) and $C. artedi$ (morph A). Indeed, the identity of these two colonizing lineages is supported on one hand for $C. zeni\text{thicus}$ (morph B) by its apparently older divergence from all other morphs and on the other hand for $C. artedi$ (morph A) by its broad distribution in North American interior lakes. The low but significant current genetic differentiation of morph B could either be due to the low level of genetic divergence between the colonizing lineages prior to their secondary contact and/or to recent gene flow since then.

Based on our data, the most parsimonious scenario thus consists in secondary contacts between a B and an ACD lineage and phenotypic plasticity within the latter. Ecological speciation could not be confirmed due to the absence of strong reproductive isolation and the lack of strong relationship between morphology, ecology, and the degree of genetic differentiation. However, ecological divergence was obvious, and incipient ecological divergence leading to reproductive isolation and speciation by depth habitat and trophic niche partitioning among morphs A, C, and D cannot be dismissed. Consequently, if the (complete) speciation criterion isdecoupled from that of invasion of multiple ecological niches accompanied by phenotypic divergence in the definition of adaptive radiation (Givnish 1997), the GL ciscoes certainly qualify as demonstrating this evolutionary phenomenon. Their ecomorphological polymorphisms are associated with the invasion of an overall adaptive zone that is certainly wider than that of most other postglacial fish groups. For freshwater fish, the occurrence of a geographically localized (intralacustrine or intrabasin) adaptive radiation is implicit to the concept of species flock, which is mainly defined on the basis of three criteria: endemism, geographical circumscription, and monophyly (Greenwood 1984). Although our data question the monophyletic origin of the Lake Nipigon ciscoes assemblage, the GL ciscoes compare with the small Cyprinodont flock of Laguna Chichancanab (Humphries and Miller 1981; Strecker et al. 1996). Both include a low number of species/morphotypes that are incompletely differentiated morphologically (intermediate phenotypes are noted) and ecologically. In both flocks, physical evidence of a very recent habitat origin is congruent with low genetic differentiation that cannot easily be parted from incomplete lineage sorting, plasticity and hybridization. These two small flocks contrast with the old habitat harboring the Lake Baikal cottoid and the African Rift Lakes cichlid species flocks, which contain several and phenomenal numbers of species, respectively. In the Lake Baikal Cottoids, phylogenetic grouping coincides with an obvious habitat partitioning by depth and an adaptive shift affecting vision under low illumination (Browman 1994; Hunt et al. 1997). The East African cichlids species group likewise segregate by habitat (substrate) but have also invaded an incredible variety of trophic niches thanks to their innovative trophic apparatus (pharyngeal jaw; Fryers and Iles 1972). Moreover, unlike in any other fish flocks, it appears that sexual selection has fostered rapid phenotypic divergence within several cichlid subclades (Dominey 1984; Seehausen et al. 1997; Van Oppen et al. 1998).

These comparisons suggest that the many factors promoting adaptive radiation (e.g., ecological opportunity, competitive release, key evolutionary innovations) are not exclusive and that the combination of these factors influence the scale of extant fish species flocks. With regard to the criterion of monophyly in species flocks, that of younger flocks is difficult to assess for technical and temporal reasons, but it is also plausible that hybridization play a determinant role in the early stages of these radiations. In lieu of being the driving forces of divergence, as proposed by the ecological speciation theory, the extensive morphological and ecological polymorphisms observed in young flocks such as the GL cisco assemblage could result from the admixture of differentiated lineages whereby increased genetic variance produced the phenotypic variability necessary for the exploration and invasion of a breadth of niches not accessible to the original forms (Anderson 1953; Arnold 1997). Invasion of unoccupied niches by hybrids is well documented by botanists (e.g., Cruzan and Arnold 1993; Rieseberg and Wendel 1993; Baldwin 1997), and evidence of hybridization/introggression is documented in many animal species assemblages where an adaptive radiation is suspected (Carson et al. 1989; Grant 1993; Colbourne et al. 1997). Moreover, DeMarais et al. (1992) have clearly demonstrated that the minnow $Gila seminuda$ originated through the hybridization of $G. robusta$ and $G. elegans$, and there is evidence that introgressive hybridization has been a diversifying agent in the evolution of this morphologically polymorphic fish genus (Dowling and DeMarais 1993).

Several observations indicate that hybridization and introgression have also played a crucial role in the evolutionary history of coregonids. On the basis of contrasting patterns of phenotypic variation following transplant experiments involving sympatry or allopatry, Svärdson (1957, 1970) proposed that introgression was the main factor in the postglacial evolution of Coregonus. Smith (1964) also suspected that increasing difficulties in species identification were due to hybridization among ecologically stressed cisco taxa of Lake Michigan in the 1960s. Interfertility among some of the GL ciscoes has been experimentally documented (Garside and Christie 1962; T. Todd, pers. comm.), and natural occurrence of hybridization between GL cisco species is plausible, as
hypothesized by Todd and Stedman (1989) on the basis of merging gill-raker counts in *C. artedi* and *C. hoyi* in Lake Huron following ecological and demographic perturbations. Finally, extremely biased sex ratios observed in *C. hoyi* of Lake Michigan (Brown 1970; Bowen et al. 1991) can also be interpreted as an indication of hybridization and lower viability in the heterogamic sex (Haldane’s rule; Phillips and Erhlinger 1995). In our study, morphological similitudes in gill raker-counts between morphs A and D, as well as skewed female: male ratios (5:1 and 15:1 for morph A and D, respectively) are congruent with an evolutionary scenario involving exchange between genetically differentiated cisco lineages.

Contrasting genetic signatures are expected in an ecologically diverse assemblage resulting from (ecological) divergence and multilineage contact/hybridization. The best possible evidence should be provided by the characterization of additional populations of sympatric and allopatric cisco forms with complementary mitochondrial and nuclear markers to compare their genetic structure and establish their phylogenetic relationships. Because previous studies using mtDNA have not documented species-specific markers (Sajdak and Phillips 1997; Reed et al. 1998) and revealed limited intraspecific polymorphisms among regional populations (Bernatchez and Dodson 1990; Shields et al. 1990; Snyder et al. 1992), a wide geographic survey may be required to sort out the evolutionary phenomena that have shaped the remarkable cisco phenotypic diversity. Although the cisco assemblage that once existed in the other North American Great Lakes has practically vanished, occurrences of sympatric forms of the “*C. artedi* complex” are still reported in several interior lakes. Morphological and genetic characterizations of several sympatric and allopatric populations are currently being achieved in our laboratory. We believe that the results from these analyses will shed light on the unusual evolutionary history of this puzzling group of temperate fish.

Acknowledgments

This work was supported by a research grant to LB and postgraduate scholarships to JT from the Endangered Species Recovery Fund (Canada) and the Natural Sciences and Engineering Research Council (NSERC, Canada). We are indebted to R. Salmon and the Ugly Crew (Lake Nipigon Fisheries Assessment Unit, Ministry of Natural Resources, Ontario, Canada) for letting us join their sampling program, to R. Saint-Laurent for collection of ecomorphological data, and to L. Fortier (GIROQ, Université Laval) for use of his image analysis system. The authors also thank R. Guyomard for his contribution when microsatellites were cloned at the Laboratoire de Génétique des Poissons (INRA Jouy-en-Josas, France).

Literature Cited

Molecular Ecology of Lake Nipigon Ciscoes

Corresponding Editor: B. Bowen